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High temperature alteration of sedimentary organic matter associated with

marine hydrothermal systems involves complex physical and chemical processes that

are not easily measured in most natural systems. Many of these processes can be

evaluated indirectly by examining the geochemistry of the hydrothermal system in the

laboratory. In this investigation, an experimental organic geochemical approach to

studying pyrolysis of sedimentary organic matter is applied to the hydrothermal

system in the Guaymas Basin, Gulf of California.

A general survey of hydrothermal oils and extractable organic matter

(bitumen) in hydrothermally altered sediments identified several homologous series of

alkanones associated with a high temperature hydrothermal origin. The alkanones

range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-

ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher)

homologs. The alkanones appear to be pyrolysis products synthesized under extreme

hydrothermal conditions.

Hydrous pyrolysis and confinement pyrolysis experiments were performed to

simulate thermally enhanced diagenetic and catagenetic changes in the immature

sedimentary organic matter. The extent of alteration was measured by monitoring the

n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic

aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts

from sediments which have been naturally altered by a sill intrusion and accompanied

hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic

matter transformations observed in the natural system. Full hopane and sterane



maturationoccurredafter 48 hr in experimentsat 330°Cwith low water/rockmass
ratios(0.29).

A variety of radical and ionic reactions are responsible for the organic

compound conversions which occur under extreme hydrothermal conditions. Short

duration pyrolysis experiments revealed that a portion of the hydrocarbons generated

from kerogen was observed to go through alkene intermediates, and the rate of alkene

isomerization was influenced by the ionic strength and catalytic mineral phases.

Confinement of the organic pyrolysate to the bulk sediment accelerated the rates of

the biomarker epimerization reactions, suggesting that these reactions are influenced

strongly by the association of the inorganic matrix, and that the relative rates of some

ionic and radical reactions can be influenced by the water/rock ratio during the

pyrolysis experiments.
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LABORATORY SIMULATED HYDROTHERMAL ALTERATION OF

SEDIMENTARY ORGANIC MATTER FROM GUAYMAS BASIN, GULF OF

CALIFORNIA

CHAPTER 1

Introduction

The process of convective cooling of ridge-crest systems, known as seafloor

hydrothermal circulation, was first proposed by Anderson and co-workers (1977) to

explain the deficiency of conductive heat loss observed at ridge axes in the Indian

Ocean. It was also in 1977 that the first observations were made of seafloor

hydrothermal venting at the Galapagos spreading center (Corliss et al., 1979). The

phenomenon of hydrothermal venting at seafloor spreading centers is now considered

a widespread and common process (Von Damm, 1990 and references therein).

Hydrothermal systems can be broadly classified as sedimented or

unsedimented. Fig. 1.1 shows the hydrothermal systems of the Eastern Pacific. Of

the hydrothermal areas documented so far on this tectonic system, Middle Valley,

Escanaba Trough and Guaymas Basin are classified as sedimented rift systems, with

the Guaymas Basin being the most thoroughly studied active, sediment-covered

hydrothermal vent system.

Guaymas Basin is the largest of the enclosed basins in the Gulf of California

with dimensions of approximately 240 x 60 km (Fig. 1.2). The two deepest areas are

the parallel spreading centers which are 3 to 5 km wide and approximately 100 m

deeper than the surrounding sea floor. These are the northern and southern axial rift

valleys (40 and 20 km long, respectively) that overlap at a non-transform offset

(Lonsdale and Becker, 1985).

The high sedimentation rate of 1 to 4 m / kyr (van Andel, 1964; Calvert, 1966;

Cu.rray et al., 1982) is much higher than typical pelagic rates over other spreading

centers. The diatomaceous nanofossil ooze from the plankton blooms (Calvert, 1966)

and clastic rich turbidites that pour into the two troughs fill the basin with a sediment

cover (Einsele and Kelts, 1982) estimated at 500 m thick (Lonsdale and Lawver,



1980). The reducing conditions in the sedimentsand low bottom water oxygen
concentrationscontributeto a total organiccarboncontentof 3 to 4% (Goldhaber,

1974). Fig. 1.3is aschematicof thehydrothermalconvectionof seawaterthroughthe
sedimentcover.

The thick sedimentcoverpreventsextrusionof freshbasaltonto the seafloor.

Instead the newly accretedmaterial solidifies as intrusions intercalatedwithin the

sediments(Moore, 1973;Williams et al., 1979;Einseleet al., 1980;Gieskeset al.,

1982a,b). The resultsof this processare shown schematicallyin Fig. 1.4. Two
distinct types of hydrothermalsystemsare operating in GuaymasBasin (Kastner,

1982). A minor systemconsistsof intrusionsof hot sills into thehighly porouscold

sediments(150-200°C),and a major hydrothermalcirculation systemconsistsof a

relatively shallowmagmachamberdriving largescalecirculation (300!-_50°C).Both

of theseprocessesheatand pyrolyze the sedimentaryorganic matter to produce

petroleum(SimoneitandLonsdale,1982). This processof hydrothermalpetroleum

generationhasbeendocumentedat othersedimentedrift systems(Kvenvoldenet al.,
1986, 1988;KvenvoldenandSimoneit,1990;Simoneitet al., 1992;Simoneit, 1990,
1993).

Thehydrothermalfluids of theGuaymasBasinhydrothermalsystemtransport
large amounts of hydrocarbonsto the seafloor, primarily of thermogenic origin

(SimoneitandLonsdale,1982;Simoneit, 1985). Previousanalyseshaveshownthat
there is a large variation in the characterof the hydrothermaloils. Theseoils can

differ in theamountsof saturated,branched,aromaticandpolar componentspresent

(SimoneitandLonsdale,1982;Kawka, 1990). But in general,theoils formedby this

hydrothermal alterationof sedimentaryorganic matter arecharacteristicallymore
polar, with a relatively high proportion of aromatic components(Simoneit, 1984;
KawkaandSimoneit,1990).

This study was a continuationof the researchinto hydrothermalpetroleum
generationat theGuaymasBasinhydrothermalsystem.It wasconductedto elucidate

someof thechemicalpathwaysthatcontrol thedistributionsof themajorcompounds
presentin oils from theGuaymasBasinhydrothermalsystem.Thisresearchinvolved

anextensionof thesurveyof oils andsedimentextractsto includethepolarnitrogen,

sulfur and oxygen-containing (NSO) fraction, identifying the major resolved

compoundsin this fraction. In additionto thesurvey,laboratoryheatingexperiments
by closedsystempyrolysis on GuaymasBasin sedimentswere conducted,and the

changesin the contentof thesolventextractableorganicmatterthat is resolvableby



gas chromatographywas monitored. Specifically, two primary objectives were

pursued:

(1) perform a survey of the polar (NSO) fraction of hydrothermally derived

oils from Guaymas Basin and identify the major oxygen-containing

compounds; and

(2) duplicate some key aspects of oil generation by hydrothermal processes

using laboratory hydrous pyrolysis.

This research is motivated by the need to understand the factors that control

the transformation of sedimentary organic matter to petroleum. A more complete

characterization of the oils and sediment extracts, combined with laboratory pyrolysis

studies, should aid in elucidating some of the major chemical pathways by which

contemporary organic matter is transformed into oil. An understanding of high

temperature pyrolytic conversion is a prerequisite to continued research on this system

or other sedimented ridge systems, where different sources of organic matter and

inorganic mineral assemblages could influence the pyrolysis products. How the study

outlined above relates to hydrothermal conversion of marine sedimentary organic

matter conversion is discussed below.

Survey of hydrothermal oils and sediment extracts from the Guaymas Basin

hydrothermal system. The previous investigations into the compositions of

hydrothermal petroleum have also involved the search for organic compounds that are

characteristic of a hydrothermal mode of formation, and could therefore be used as

indicators of the quick, high temperature mode of organic matter maturation.

Correlations have been made between the high thermal stresses encountered in the

Guaymas Basin hydrothermal system and Diels' hydrocarbon (1,2-(3'-

methylcyclopenteno)phenanthrene), a triaromatic steroid hydrocarbon common in

Guaymas Basin oils. This compound has been used as an indicator of rapid

hydrothermal petroleum generation processes (Kawka, 1990; Simoneit et al., 1992),

although downcore investigations of sediments thermally altered by contact

metamorphism from sill intrusions have found lower amounts in these areas than what

is expected from the analyses of seabed oils (Kawka, 1990). These previous

investigations have focused primarily on the aliphatic and aromatic components, with
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only cursorymentionof somepolarcomponentsof thehydrothermaloils (Gieskeset

al., 1988).

As the next step in characterizing petroleum generatedby hydrothermal

processes,a surveywasundertakenof the GC resolvedcomponentsof thepolarNSO

fractionsin oils andthermally-alteredsedimentextracts.This surveyidentifiedsome

major oxygenatedcompoundsthat appear to be uniquely associatedwith a high

temperaturehydrothermal mode of formation. The analysesof the polar NSO

fractionswerecorrelatedto thealiphaticandaromaticfractions. A description of the

samples used in the survey and a summary of the results are presented in Chapter 2.

A complete display of the gas chromatograms from this survey is presented in

Appendices 1 - 3.

Simulated hydrothermal alteration of sedimentary organic matter by laboratory

hydrous pyrolysis. Extensive laboratory research has been performed to further our

understanding of the chemical transformations which occur during the maturation of

sedimentary organic matter. In simulating the natural oil generation process, high

temperature experiments are performed to compensate for the lower temperatures and

longer durations during natural petroleum generation. The procedure of laboratory

hydrous pyrolysis is one method used to study the transformations of sedimentary

organic matter. This procedure is defined as the pyrolysis of a sample in contact with

liquid water (Lewan et al., 1979), with the water / sediment ratio adjusted to insure

that the sample is completely submerged in the liquid phase at the reaction

temperature (Lewan, 1992). Hydrous pyrolysis is commonly used to further our

understanding of the oil generation process by assessing the maturation level of

petroleum and sedimentary organic matter after different time / temperature intervals

(Lewan, 1993 and references therein).

Hydrous pyrolysis is well suited for simulating hydrothermal processes since

hydrothermal oils are the result of natural hydrous pyrolysis occurring at high

temperature over a relatively short time (Simoneit, 1992). A detailed investigation

was undertaken to study the major reactions occurring under simulated hydrothermal

conditions using pure organic compounds and an organic-rich shale. The results are

presented in Chapter 3. By combining these results with the knowledge of the actual

organic chemical reactions which occur on mineral surfaces (Solomon, 1968; Wilson

et al., 1986; Regtop et al., 1985; Kissin, 1987; Weres et al., 1988; Lao et al., 1989;

Smith et al., 1989) and under high temperature aqueous conditions (Blouri et al., 1981;

Breslow, 1991; Depeyre and Flicoteaux, 1991; Siskin and Katritzky, 1991 and
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referencestherein), a more detailed model of organic conversionsunder hydrous

pyrolysisconditionswasdeveloped.

A series of hydrous pyrolysis experimentswas performed on a surface

sediment from GuaymasBasin. The effects of temperatureon the nature and

concentrationsof selectedcomponentsin the pyrolysateswere documented. The

resultsof thisstudyarepresentedin Chapter4.

A modified pyrolysis technique was developed which was better suited

towards simulating the natural conditions during hydrothermal alteration of

sedimentaryorganic matter. Using this method, three GuaymasBasin sediment

sampleswhich have undergonedifferent amountsof diagenesiswere pyrolyzed.

Theseheatingexperimentswerecomparedto downcoresedimentsequencesthathave

beenthermallyalteredby a sill intrusion. Theresultsarepresentedin Chapter5.

Aliphatic ketones are highly correlated with high temperaturepyrolysis
conditions,bothnaturalandsimulated. In additionto someselectedresultsfrom the

previouspyrolysis experiments,the resultsfrom additionalheatingexperimentsare
summarizedin Chapter6. Simulationof the naturalhydrothermalpyrolysis process

by laboratoryhydrouspyrolysis techniquesprovidesinformation regardingthemode
of alkanoneformation.

A summaryof theoverallresultsis presentedin Chapter7. The insightgained

from thestudyof laboratorymethodsfor simulatinghydrothermaloil generationhas

betterdefined the experimentaldesignand conditionsnecessarywhich best suit the

simulationprocesses,andapplicationof theseresultsto thenaturalhydrouspyrolyses
broadenour understandingof the conditions which control the formation of oil by

hightemperaturehydrothermalprocesses.
The readerof this thesisshouldbe awarethat the chaptersof this thesisare

written in manuscriptformat to facilitate submissionof the chaptersfor publication.

As such,thereis unavoidablysomeduplicationof materialfrom chapterto chapter.
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Figure 1.1. Map of discovered submarine hydrothermal systems of the Eastern Pacific

(Von Damm, 1991 ).
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CHAPTER 2

Survey of the Polar (NSO) Fractions of Seabed Oils and Sediment Extracts
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ABSTRACT

The aliphatic, aromatic and polar (NSO) fractions of seabed oils and sediment

extracts from the Guaymas Basin hydrothermal system have been analyzed by gas

chromatography and gas chromatography - mass spectrometry. The oils were

collected from the interiors and exteriors of high temperature hydrothermal vents and

represent hydrothermal pyrolysates that have migrated to the seafloor by hydrothermal

fluid circulation. The downcore sediments are representative of both thermally

unaltered and thermally altered sediments. The survey has revealed the presence of

oxygenated compounds correlated with samples exhibiting a high degree of thermal

maturity. Several homologous series of related ketone isomers are enriched in the

interiors of the hydrothermal vent samples or in hydrothermally-altered sequences of

the downcore sediments The ketones range in carbon number from C11 to C31 with a

Cmax from C15 to C23, distributions that are similar to those of the n-alkanes. The

alkan-2-ones are usually in highest concentrations, with lower amounts of 3-, 4-, 5-,

6-, 7- (and higher) homologues. The alkanones possess no carbon number preference.

A second class of oxygenated compounds found in these same samples are the

phenols. A series of methyl-, dimethyl- and trimethyl-isoprenoid phenols are present

in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoid phenols

present as major components, and a trimethyl-isoprenoid phenol as a minor

component. A homologous series of n-alkylphenols have also been found in the

seabed oils. The alkanones and phenols are derived from the hydrothermal alteration

of sedimentary organic matter. The ketones and n-alkylphenols are most likely

synthesized under hydrothermal conditions, but the isoprenoid phenols are probably

hydrothermal alteration products of natural product precursors. The suite of normal

ketones should be useful tracers of high temperature hydrothermal processes.
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INTRODUCTION

Hydrothermal activity is common at tectonic spreading ridges throughout the

world. The Guaymas Basin, Gulf of California is a spreading center under a thick

cover of diatomaceous oozes and mud turbidites. The combination of plate accretion

by dike and sill intrusions into the sediments and accompanying high temperature

hydrothermal fluids pyrolyze the sedimentary organic matter to produce petroleum.

The petroleum can be transported to the seafloor by hydrothermal fluid migration.

14C ages for selected petroleum samples range from 4240 to 5705 years B. P.

indicating that a significant proportion of the hydrothermal petroleum is derived from

Recent organic detritus (Peter et al., 1991). Hydrothermal petroleum derived from

shallow sediments are characteristically enriched in polar constituents and have a high

polycyclic aromatic hydrocarbon content (Simoneit, 1983, 1984; Kawka and

Simoneit; 1990). Guaymas Basin is the most thoroughly studied sediment-covered

spreading center. Although extensive research has been performed on the

characterization of the aliphatic and aromatic fractions of these hydrothermal oils

(Simoneit and Lonsdale, 1982; Simoneit, 1985, 1990), little is known about the polar

nitrogen, sulfur and oxygen (NSO) fraction.

This chapter is an organic geochemical survey of the NSO fractions of

representative oils and sediment extracts from the Guaymas Basin hydrothermal

system. Comparisons are made to the aliphatic and aromatic fractions of the oils and

sediment extracts. Specifically, two types of samples were studied : (1) seabed oils

associated with high temperature seafloor hydrothermal vents that have been migrated

with the hydrothermal fluids and condensed in the vent spires; and (2) extractable

organic matter in downcore sediments representative of unaltered and hydrothermally

altered regions. The objective of this research is to characterize some of the

components in one of the major fractions of the oils, the polar (NSO) fraction.
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EXPERIMENTAL

Samples. The seabed oils for this study were sampled from the interiors and

exteriors of hydrothermal vents collected during the dives of the Deep Submergence

Vessel (D.S.V.) Alvin in March, 1988. Figure 2.1 is a location map of the Guaymas

Basin hydrothermal system located in the Gulf of California. Figure 2.2 is a detailed

bathymetric chart of Guaymas Basin showing the general locations of Alvin dives

1981-1984. The transponder array with its x,y coordinates is also indicated (Simoneit,

1988). The x,y coordinates of the oil covered hydrothermal vents are listed in Table

2.1.

The subsurface sediment samples analyzed in this study were collected during

Leg 64 of the Deep Sea Drilling Project (DSDP) from December, 1978 to January,

1979. The selected downcore samples were taken from Holes 477 and 481A.

Locations of the two drill sites are shown in Figure 2.1. The lithologic columns for

Sites 477 and 481A are shown in Figure 2.3. The sample listings, depths and

descriptions are summarized in Table 2.2.

Extraction and fractionation. The frozen hydrothermal vent samples were

brought to room temperature and oil samples were collected from the interiors and

exteriors of each specimen. They were diluted in chloroform and filtered to remove

any debris and passed through an activated copper column to remove the elemental

sulfur. The samples were reduced to 2 mL by rotary evaporation.

The DSDP samples have been freeze dried and stored at room temperature

until analysis. Powdered sediments ranging in size from 10 to 40 g were extracted for

72 hours with methanol / methylene chloride in a Soxhlet extractor. The extract was

combined with 100 mL water and the aqueous phase acidified with 6N HC1. The

organic phase was collected and the aqueous phase was extracted with two 50 mL

portions of methylene chloride. The three organic extracts were combined and solvent

removed to near dryness by rotary evaporation.

The whole oils and sediment extracts were deasphalted with 100 mL heptane.

The asphaltenes were allowed to precipitate for 24 hrs and removed by filtration. The

deasphalted fractions were reduced to 4 mL and fractionated by column

chromatography (30 cm x 1 cm) packed with 3.8 g alumina (fully active) over 3.8 g

silica gel (fully active). The samples were separated into three fractions by elution

with 50 mL heptane (aliphatic, F1), 50 mL toluene (aromatic, F2)and 25 mL

methanol (polar NSO, F3).
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Quantitationwasby the addition of n-C24D50 for aliphatic fractions and D10-

pyrene for aromatic and polar fractions.

Gas chromatography. Gas chromatography (GC) of the oil fractions was

performed with a Hewlett Packard 5890A equipped with a 30 m x 0.25 mm i.d. DB-5

open tubular column (0.25 pm film thickness). The GC oven was heated using the

following program : isothermal for 2 min. at 650C, 4°/min. to 310°C, and isothermal

for 30 min., with the injector at 290°C, detector at 325°C, and helium as the carrier

gas.

Gas chromatography-mass spectrometry. The gas chromatography-mass

spectrometry (GC-MS) was performed on a Finnigan 9610 gas chromatograph

coupled to a Finnigan 4021 quadrupole mass spectrometer operated at 70 eV over the

mass range 50-650 dalton and a cycle time of 2.0 s. The GC oven temperature was

programmed at isothermal for 2 min. at 65°C, 3°/min. to 310"C, and isothermal for 30

min., with the injector at 290°C, and helium as the carrier gas. The MS data were

processed with an on-line Finnigan-Incos 2300 computer data system.
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RESULTS AND DISCUSSION

Seabed oils. The results of the bulk chromatographic separations into the

compound classes for the four hydrothermal vent samples are listed in Table 2.3 and

shown in Fig. 2.4 (a-d) . Samples 1972-CH1, 1983-CH1 and 1984-CH1 show a

consistent difference between their interior and exterior oils. The exterior oils all

show a decrease in the proportion of the aliphatic fractions with an accompanying

increase in the aromatic, polar and asphaltene fractions relative to the interior oils.

The interior and exterior samples from 1984-CH2 have essentially the same

proportions of the four fractions. These compositional differences between the

interior and exterior oils are more clearly shown in Fig. 2.5 which is a ternary diagram

of the gross oil compositions where the NSO and asphaltene fractions have been

combined into one compound class. Included on the ternary diagram are seabed oil

samples from Guaymas Basin collected during previous Alvin dives and dredge

sampling expeditions (Kawka and Simoneit, 1987).

The variations in the distribution of the oils from the interiors and the exteriors

of the high temperature hydrothermal vents reflect the process of biodegradation

occurring after migration to the seafloor (Kawka and Simoneit, 1987). With the

exception of oil 1984-CH2, whose interior and exterior oils are almost identical in

composition, the seabed oils have a significant decrease in the aliphatic portion of the

bulk composition. Water washing, the removal of water-soluble components, is

another likely factor working in combination with biodegradation to alter the bulk

compositions of the oils and thus enrich the NSO fractions (Tissot and Welte, 1984).

The aliphatic, aromatic and polar NSO fractions of the eight seabed oils have

been analyzed by gas chromatography. The complete set of gas chromatograms are

located in Appendix 1. The hydrothermal oils from 1972-CH1 were selected as

representative oils for discussing the major characteristics of the seabed samples. The

gas chromatograms of the aliphatic, aromatic and NSO fractions from the

hydrothermal oils of 1972-CH1 are presented in Fig. 2.6 and 2.7.

The hydrocarbon patterns of the aliphatic fractions are typical of other normal

hydrothermal seabed oils previously reported (Simoneit, 1984). The aliphatic

fractions of these oils have smooth n-alkane distributions (carbon preference index,

CPI = I) with the other major components being the isoprenoids, with the isoprenoids

pristane and phytane in highest concentrations. The n-alkanes range in carbon number

from I I to 25, with the 1984-CH1 oils containing hydrocarbons up to C29. The
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pristane/phytane ratios range from 1.1 to 1.7. However, there is a consistent trend of

the exterior oils having a decreased amount of normal hydrocarbons relative to the

isoprenoid hydrocarbons, characteristic of having undergone slight biodegradation

relative to the corresponding oil from the interior of the vent. This is most pronounced

in the oils from 1972-CH1 (Fig. 2.6a and 2.7a), where the pristane/n-Cl7 and

phytane/_n-Cl8 ratios of the exterior oil are 4.25 and 3.31 respectively, but the

pfistane/n-Cl7 and phytane/n-Cl8 ratios of the interior oil are 0.79 and 0.51

respectively. The molecular parameters for these oils are summarized in Table 2.4. In

slightly and moderately biodegraded oils, the n-alkanes are the first class of

compounds to be removed, leaving the isoprenoid hydrocarbons relatively unaffected

(Connan et al., 1980; Tissot and Welte, 1984). Although the n-alkanes are present in

all oils, there is a significant increase in the Pr/n-Cl7 and Pffn_-Cl8, characteristic of

the very early stages of biodegradation.

The aromatic fractions contain polycyclic aromatic hydrocarbons and alkylated

polycyclic aromatic hydrocarbons common to other Guaymas Basin seabed oils

(Simoneit and Lonsdale, 1982, Kawka and Simoneit, 1990). The GC traces of the

aromatic fractions are characterized by a large unresolved complex mixture (UCM)

which results in a large hump in the chromatogram, with the resolved components on

this hump. Except for the oils from 1984-CH2, where the interior and exterior oils are

very similar, the resolved component in highest concentrations in most of the aromatic

fractions from the chimney exteriors is Diels' hydrocarbon (1,2-(3'-

methylcyclopenteno)phenanthrene), a triaromatic steroid hydrocarbon common in

Guaymas Basin oils and an indicator of rapid hydrothermal petroleum generation

processes (Kawka, 1990; Simoneit et al., 1992a). Diels' hydrocarbon (DHC) and

some of the other major resolved polycyclic aromatic hydrocarbons (PAH) are

identified in the aromatic fractions of the 1972-CH1 oils (Fig. 2.6 and 2.7).

The polar NSO fractions, similar to the aromatic fractions, are dominated by a

large UCM, with the resolved components on this hump. Two classes of homologous

oxygenated compounds, alkanones and phenols, have been identified as the major

resolved components of the NSO fractions.

The alkanones occur as several homologous series which range in carbon

number from Cll tO C31 with a Cmax from C15 to C23. These oils contain alkan-2-

ones in highest concentrations, with lower amounts of 3-, 4-, 5-, 6-, 7- (and higher)

alkanones. These compounds possess no carbon number preference and are enriched

in the interiors of the hydrothermal vent spires indicating the ketones have a pyrolytic
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origin at depth or are formed by reaction with the hot hydrothermal fluids, and do not

originate from an external biogenic deposition. The relative decrease of the aliphatic

ketones of the polar fractions of the exterior oils is likely due to preferential microbial

utilization of straight-chain aliphatic components. Fig. 2.8 shows the distribution of

ketones present in a representative oil, the interior oil from vent 1972-CH1.

The second class of oxygenated compounds are the phenols. A series of

methyl-, dimethyl- and trimethyl-isoprenoid phenols were present in all of the NSO

fractions, with the methyl- and dimethyl-isoprenoid phenols present as major

components, and a trimethyl-isoprenoid phenol as a minor component. The tentative

structure assignments were made by interpretation of the mass spectra of the parents

and silylated derivatives and by the similarities to the mass spectra of the mono-, di-

and trimethylchromans (Sinninghe Damst6 et al., 1987), structurally related

compounds possessing an isoprenoid side chain. The two compounds in highest

concentration exhibited characteristic mass spectra with ions at m/z 107, 122, 135, 161

and 388 (molecular ion, M +) and m/z 121,136, 149 and 402 (M+). These compounds

are labeled A and B in Fig. 2.6 - 2.7. A third phenol, compound C, is found in trace

levels and has a characteristic mass spectrum ofm/z 135, 150, 194, 374 and 416 (M+).

Fig. 2.9 shows the mass fragmentograms of the characteristic ions of these

compounds. The mass spectra of compounds A, B and C, and the proposed structures

are shown in Fig. 2.10, which were present in interior oil of chimney 1972-CH 1 F3, a

representative oil sample. Treating this oil with a silylating agent (BSTFA, Pierce

Chemical Co.) produced the trimethylsilane derivatives of compounds A, B and C

(labeled A', B' and C') with characteristic ions of 179, 194, 207 and 460 (M+), 193,

208, 221 and 474 (M ÷) and 193, 222, 266 and 488 (M+), respectively. The mass

fragmentograms of the characteristic ions of these three derivatives are shown in Fig.

2.11, and mass spectra of the three derivatized phenols are shown in Fig. 2.12.

Present in much lower concentrations are homologous series of n-alkylphenols.

These series are shown in Fig. 2.13. Representative mass fragmentograms of the C27

to C29 n-alkylphenols is shown in Fig. 2.14, and mass spectra are shown in Fig. 2.15.

Downcore sediment extracts from DSDP Site 477. Site 477 is located in the

southern rift of Guaymas Basin. A total of 191 meters was cored. A massive dolerite

sill was encountered between 58 and 105.5 m below seafloor (mbsf). The sediments

above the sill consist primarily of olive-brown hemipelagic diatom oozes and mud

turbidites. Extensive hydrothermal alteration of the sediments has occurred below the

sill resulting in grey claystones and sandstones, with dolomite, pyrite and quartz
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(Curray et al., 1982). Threesedimentsamplesabovethe sill and twelve sediment

samplesbelow the sill were extractedand analyzedby GC. A few sampleswere

selectedfor analysisby GC-MS. The completesetof thegaschromatogramsfor the

totalextractsandthealiphatic,aromaticandNSOfractionsarelocatedin Appendix2.

An extensive analysis of the aliphatic and aromatic fractions of sediments altered by

the emplacement of the dolorite sill has previously been reported (Kawka, 1990).

Therefore, only a brief discussion of some representative samples will be presented.

Sample 477-2-2 (145-150) is representative of a typical near-surface sediment,

dominated by long-chain n-alkanes with a CPI--3.9, characteristic of a terrigenous

source for these n-alkanes (Brassell et al., 1978). The major aromatic component is

perylene, a diagenetically-derived PAH (Louda and Baker, 1974). Both sample 477-

7-1 (88-90) and 477-7-1 (106-108) resemble other samples from Guaymas Basin that

have undergone thermally-enhanced diagenesis (Simoneit et al., 1984, 1992b), where

the total extract is dominated by pristane, phytane, the C25 isoprenoid thiophenes and

the steroid biomarkers. The polar fractions of both samples contain a large UCM with

few resolved components. Two samples near the sill contact zone, 477-16-2 (140-

145) and 477-16-2 (145-150), are fully mature organic extracts. The CPI--1 for the n-

alkanes and the aromatic fractions contain the full suite of PAH and alkylated-PAH.

Of interest is the presence of the alkyl ketones. The alkanones occur as several

homologous series which range in carbon number from Cll to C33. As with the

seabed oils, these sediment extracts contain 2-, 3-, 4-, 5-, 6-, 7- (and higher) alkanones.

There is no carbon number preference and their correlation with the oil zone suggests

that the ketones have a high temperature pyrolytic origin. Deeper in the sediment

column the alteration is extensive, resulting in low yields in the extractable organic

matter from the sediments. The total extracts are dominated by the aromatic

components. The ketones are not present or are in lower concentrations in these

sediments. It is interesting to note that samples 477-16-4 (135-140) and 477-17-1

(145-150) have a bimodal n-alkane distribution with maxima at C10 and C23. The low

molecular weight component is from a condensate and contains the diamondoid

hydrocarbons adamantane, diadamantane, triadamantane and their alkylated

derivatives, analogous to petroleum condensates (Wingert, 1992). This portion of the

sediment column was apparently an active flow channel for the condensate.

Downcore sediment extracts from DSDP Site 481A. Site 481A is located in

the northern rift of Guaymas Basin. A total of 384 meters was cored. A massive chert

and dolerite sill complex was encountered between 169.5 and 200 mbsf. The
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sedimentsabovethe sill consist primarily of olive-brown diatomaceousmudswith

intercalationsof grey,muddysands(Currayet al., 1982). Hydrothermalalterationof
thesedimentshasoccurredin contactzonesaboveandbelowthesill. Sevensediment

samplesabovethe sill andnine sedimentsamplesbelow thesill were extractedand

analyzedbyGC. Thecompletesetof thegaschromatogramsfor thetotalextractsand

thealiphatic,aromaticandNSO fractionsarelocatedin Appendix3. Fromthis setof

samples,eight were chosen for analysis by GC-MS. They are representativeof

sedimentsthat are unaltered,partially altered and extensively altered by the sill
intrusion.

A listing of the samplesalong with various parametersof the aliphatic

fractionsisgivenin Table2.5. Then-alkane CPI, a measure of the maturation, ranges

from approximately 5.5 in the sediments furthest away from the sill to 1 in the

sediments nearest to the contact zone. The ratio of pristane to phytane (Pr/Ph) is

usually around 0.5 in unaltered sediments, but becomes inverted in the oils and

thermally altered sequences. Therefore, these two molecular parameters are useful in

distinguishing the unaltered sequences from the altered sequences. The CPI and Pr/Ph

are plotted versus depth in Fig. 2.16a and 2.16b, respectively.

The mass fragmentograms m/z 191, representative of the triterpenoid

hydrocarbons, are presented in Fig. 2.17a - 2.17h for the eight samples. The samples

away from the sill are dominated by triterpenes and 131_-hopanes, products of

diagenesis. The samples close to the sill have undergone thermal maturation, but a

measure of the C31 (S/(S+R)) parameter of the C-22 carbon for the samples closest to

the sill range from 0.37 to 0.49. These ratios are not at the equilibrium ratio of 0.6

(Ensminger et al., 1974, 1977; Seifert and Moldowan, 1978) and indicate that full

thermal maturation has not been achieved.

Fragmentograms representative of the steroid hydrocarbons are presented in

Fig. 2.18a - 2.18h. As with the triterpenoids, the steroids away from the sill are

diagenetic products, primarily sterenes. The steroid distributions near the sill are

dominated by C27 to C29 steranes, primarily the 5a(H),l 4a(H),l 7a(H)-20R isomers,

with lower amounts of the less stable 513(H),14o(H),17a(H)-20R isomers, a

distribution commonly found in hydrothermal oils (Kawka and Simoneit, 1987). A

dominance of the C29(20R) isomer in sample 481A-12-4 (55-65) suggests greater

contribution of a terrestrial steroid component (Huang and Meinschein, 1979).

Histograms of concentrations of the major PAH for ihe eight sediment samples

are shown in Fig. 2.19a - 2.19h. These distributions range from perylene dominated in
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theunalteredsequencesto phenanthrenedominatedin thealteredsequences.Perylene

isprimarily adiageneticallyformedPAH (LoudaandBaker,1984)which is notstable

underhydrothermalconditionsand is destroyedin thealteredzones.Theother PAH

in the histogramsarederivedpyrolytically andthereforethe changefrom perylene-

rich to phenanthrenerich is another useful thermal maturity indicator. Diels'

hydrocarbon,a triaromatic steroid hydrocarbonused as a tracer of hydrothermal

alterationof organicmatter,wasdetectedin thealteredzones,but theconcentrations

werelow comparedto theconcentrationsfound in seabedoils (Kawka,1990).

The surveyof the NSO fraction focusedon thesearchfor theketonesand the

isoprenoidphenols,the major componentsof the polar fractionsof the seabedoils.

The fragmentogramsrepresentativeof the alkanonesaregiven in Fig. 2.20a- 2.20h.

Alkanone distributions resembling those in the oils were found only in samples 481 A-

12-4 (55-65) and 481A-13-2 (118-127). As with the seabed oils, the ketones in these

two altered sequences are present as several homologous series of 2-, 3-, 4-, 5-, 6-, 7-

(and higher) alkanones. They have no carbon number preference and the correlation

of their presence with the oil zone suggests that these ketones were formed during the

hydrothermal alteration of the sedimentary organic matter.

The isoprenoid phenols were found in samples 481A-12-4 (55-65) and 481A-

18-1 (30-32) but not in the altered sediment of 481A-13-2 (118-127). The mass

fragmentograms of m/z 122 and m/z 136, representative of the methyl and dimethyl

isoprenoid phenols, are presented in Fig. 2.21.

Downcore variations in the aliphatic and aromatic compositions in Hole 481A

show a direct relationship to the thermal alteration of the sedimentary organic matter

from sill emplacement. The alkanones and isoprenoid phenols present in the seabed

oils were found only in the altered zones. Ketones are absent or occur in trace

amounts in oils (Tissot and Welte, 1984), although the homologous series of alkan-2-

ones are common constituents of recent and older marine sediments, they are generally

present with an odd-carbon number predominance (Brassell et al., 1980; Cranwell,

1977; Simoneit, 1978, 1979; Volkman et al., 1983). The ketones in the seabed oils

and thermally altered zones of the downcore sections are unique in that they are major

resolved components of the polar fractions exhibiting a smooth distribution, analogous

to the smooth n-alkane distributions of the oils. Aliphatic ketones are commonly

found in oil shale pyrolysates (Regtop et al, 1982; Rovere et al., 1983), but only

recently have ketones been detected in sedimentary rocks exhibiting a CPI = 1

(George and Jardine, 1993). In that study the ketones have been found in the
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thermallyalteredsedimentsadjacentto aProterozoicsill, indicatingthat thereis a link

betweenthe high temperatureigneousalterationof sedimentaryorganicmatter and
ketoneformation.

Then-alkylphenols present in the seabed oils in several homologous series also

exhibit a smooth distribution (CPI -- 1) characteristic of a pyrolytic origin. But the

isoprenoid phenols present in the oils and altered sedimentary sequences occur only as

a few discrete isomers, structurally related to the tocopherols and sedimentary

chromans (Sinninghe Damst6 et al., 1987). This suggests that these compounds or

related precursors could lead to the isoprenoid phenols. Of these two classes of

compounds, the chromans are more likely to be converted directly to the isoprenoid

phenols since they lack the additional phenolic hydroxyl groups present in the

tocopherols. Chromans have been identified in Guaymas Basin sediments (Kawka,

1990). A survey of the aromatic fractions of sediment extracts of Hole 481A has also

identified these compounds, but in only trace amounts in the thermally-unaltered

zones. The most abundant isomer of the chroman series has three methyls on the

aromatic ring structure, but the most abundant isomer of the isoprenoid phenolic series

has only one methyl on the aromatic ring. These results argue against sedimentary

chromans being precursors to the isoprenoid phenols. One possible mode of origin is

that the isoprenoid phenols are bound to the kerogen matrix and preferentially released

under high temperature hydrothermal conditions. Thus, the presence of these phenolic

compounds is probably highly dependent on the organic source material and they are

therefore not good candidates as universal indicators of high temperature

hydrothermal processes.

However, if tocopherol or chroman related compounds are found to be

precursors of the isoprenoid phenols, it does indicate the preferential cleavage of the

ether bridge of the precursor structure, an indication that an acid-catalyzed reaction

under relatively extreme conditions is necessary (Siskin et al., 1990) for the reaction to

proceed. This is important because it identifies a type of ionic reaction, as opposed to

radical cracking reactions, as operating in the breakdown of the kerogen structure, a

class of chemical reactions often overlooked and only recently being emphasized as

possibly significant to the petroleum generation process (Siskin and Katritzky, 1991 ).
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CONCLUSIONS

A survey of the polar fractions of the seabed oils and sediment extracts of

hydrothermally-altered sequences has revealed that there are two major classes of

oxygenated compounds present, the ketones and the phenols. The smooth

distributions of the n-alkylphenols and the alkanones (CPI -- 1) indicate a pyrolytic

source, analogous to the origin of n-alkanes from the pyrolysis of sedimentary organic

matter. Their presence in the thermally-altered downcore sediments suggests that they

are formed by the sill intrusions and transported to the seabed by hydrothermal fluid

circulation. The isoprenoid phenols, occurring as a few isomers, are likely

hydrothermal alteration products of natural product precursors in the sediments. The

proposed structures of the isoprenoid phenols suggest that the precursors are

structurally related to the sedimentary chromans or toeopherols present in these

sediments.
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Table2.1. Locationof oil coveredhydrothermalventsamples.

Venta Locationb

1972-CH1 notavailable

1983-CH1 4935,4712

1984-CH1 4929,4687

1984-CH2 4009,3578

aNumberrefersto Alvin dive number,CH ,- chimneysample
b Locationsaregiven in transpondercoordinateswithin the 1988transponderarray
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Table2.2a. Samplesummaryfor DSDPSite477.

Sample Deptha Descriptionb
(mbsf)

a) 477-2-2(145-150) 3.97 Olivebrowndiatomaceousooze

b) 477-7-1(88-90) 49.39 Diatomaceousooze

c) 477-7-1(106-108) 49.57 Diatomaceousooze

d) 477-16-2(140-145) 117.93 Hydrothermally-alteredclaysiltstone

e) 477-16-2(145-150) 117.98 Hydrothermally-alteredclaysiltstone

f) 477-16-4(130-135) 120.83 Hydrothermally-alteredclaysiltstone

g) 477-16-4(135-140) 120.88 HydrothermaUy-alteredclaysiltstone

h) 477-17-1(145-150) 125.98 Hydrothermally-alteredsilty siltstone

i) 477-19-1(130-135) 144.83 Hydrothermally-alteredsiltstone

j) 477-19-1(135-140) 144.88 Hydrothermally-alteredsiltstone
k) 477-20-1(135-140) 154.37 Hydrothermally-alteredclaystone

1) 477-21-1(52-57+ 91-96) 163.25 Hydrothermally-alteredsilty clay

m) 477-22-1(110-115) 173.12 Hydrothermally-alteredsilty clay

n) 477-23-1(90-95) 182.47 Hydrothermally-alteredsilty clay

o) 477-23-1(CC) 182.80 Hydrothermally-alteredsilty clay

a Depth(metersbelowseafloor)calculatedaccordingto DSDPconvention(Currayet
al., 1982)

b Sampledescriptionsarefrom Currayet al. (1982)
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Table2.2b. Samplesummaryfor DSDPSite481A.

Samplea Deptha
(mbsf)

Description b

a) 481A-4-2 (93-98) 73.0

b) 481 A-6-5 (118-120) 98.2

c) 481A-6-5 (124-135) 98.3

d) 48 1A-7-6 (71-80) 107.3

e) 481A-8-7 (top of pipe) 108.5

f) 481A-12-4 (55-65) 151.6

g) 481A-13-2 (118-127) 158.7

h) 481A-18-1 (30-32) 203.8

i) 481A-18-1 (CC) 204.1

j) 481A-20-1 (110-115) 223.6

k) 481A-22-1 (65-70) 242.2

1) 481A-22-7 (top of pipe) 250.5

m) 481A-22-7 (97-101) 251.5

n) 481A-24-CC 269.9

o) 481 A-25-CC 279.4

p) 481 A-26-CC 288.9

Olive-brown Diatomaceous ooze

Grayish-olive diatomaceous mud

Grayish-olive diatomaceous mud

Muddy diatomaceous ooze

Grayish-olive diatomaceous mud

Olive- to brownish-black silty clay

Brownish-black clay- and sandstone

Brownish-grey sandy clay

Brownish-grey sandy clay

Diatomaceous mudstone

Diatomaceous mudstone

Mudstone

Mudstone

Silty claystone

Olive grey silty claystone

Claystone to silty claystone

a Depth (meters below seafloor) calculated according to DSDP convention (Curray et

al., 1982)

b Sample descriptions are from Curray et al. (1982)
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Table2.3. Bulk characterizationof seabed chimney oils.

Sample F1 (%) F2 (%) F3 (%) Asphaltenes (%)

1972-CH 1 Interior

1972-CH 1 Exterior

1983-CH 1 Interior

1983-CH 1 Exterior

1984-CH 1 Interior

1984-CH 1 Exterior

1984-CH2 Interior

1984-CH2 Exterior

63.8 4.8 15.8 15.6

39.9 12.3 20.0 27.8

68.5 5.8 20.5 5.2

54.6 10.2 25.3 9.9

71.0 3.4 20.3 5.3

36.1 15.2 29.3 19.4

31.1 15.8 31.5 21.6

29.8 16.3 32.7 21.2
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Table2.4. Summaryof molecularparametersfor hydrothermalventoils.

Hydrocarbons Ketones

Sample n-Alkane Cmax Pr/Ph Pr/n-Cl7 Ph/n-C18 Ketone Cmax

range range

1972-CH 1 Interior

1972-CH 1 Exterior

1983-CH 1 Interior

1983-CH 1 Exterior

1984-CH 1 Interior

1984-CH 1 Exterior

1984-CH2 Interior

1984-CH2 Exterior

12-27 18 1.3 0.79 0.51 12-29 22

12-25 18 1.3 4.25 3.31 15-25 20

12-25 18 1.4 0.87 0.65 12-28 21

12-24 16 1.6 1.27 0.93 12-26 19

12-29 20 1.1 0.94 0.70 12-31 23

12-28 19 1.4 1.37 0.87 12-30 21

12-25 16 1.5 0.85 0.66 11-25 15

11-25 15 1.7 1.03 0.82 11-25 15
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Table2.5. Selectedparametersfor thealiphaticfractionsof DSDPLeg 64Hole481A.

Samples(Leg 64,Hole481A)

4-2 8-7 12-4 13-2 18-1 20-1 22-7 26-CC
Parameter (93-98) (top) (55-65) (118-127)(30-32) (110-115)(top)

n-alkane

range

CPI

Cmax

Pr/Ph

Pr/n-Cl7

Ph/n-C 18

S/(S+R)
C31

S/(S+R)
C32

29,30,31H
29,30,31M

27R/29R

27R/28R

28R/29R

12-33 12-32 12-35 12-38 12-38 12-31 13-31 13-33

4.09 3.60 1.87 1.20 1.60 n.d. 4.13 5.46

29 29 29 15 15 15,29 29 29

n.d. 0.47 1.51 1.75 2.09 0.34 0.45 0.50

n.d. 0.31 2.16 0.54 2.14 5.96 1.17 1.54

n.d. 1.04 1.79 0.34 1.21 14.85 4.43 4.8

- 0.37 0.49 .048 - -

0.42 .048

1.79 2.89 2.16

0.74 2.01 1.08 1.73

2.09 1.61 2.35 1.57

0.35 1.24 0.46 1.10

n.d. = not determined

S/(S+R) = C-22 S and R epimer ratios for C3t and Cn ct-homohopanes

29,30,31 H C29 + C30 + C31 ct-hopanes

29,30,31 M - C29 + C3o + C31 moretanes

27R C27 20 R ctctct-sterane

27R C27 20 R ctctct-sterane

28R C28 20R ctact-sterane

28R C28 20R _xetct-sterane

29R C29 20 R actet-sterane 29R C29 20 R ctctct-sterane
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Figure 2.1. (a) Map of Gulf of California showing geographic location of the sampling

area, and (b) Map of Guaymas Basin showing its two rifts, with locations of DSDP

Sites (Simoneit, 1991).
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Figure 2.5. Ternary diagram of the bulk compositions for seabed hydrothermal oils.

(adapted from Kawka and Simoneit, 1987).
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Figure 2.6. Gas chromatograms of 1972-CH1 Interior: (a) aliphatic fraction; (b)

aromatic fraction; (c) NSO fraction. Numbers refer to carbon chain length of the n-

alkanes and ketones, Pr = pristane, Ph -- phytane, A --- isoprenoid phenol (MW -- 388),

B -- isoprenoid phenol (MW -- 402).
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Figure 2.7. Gas chromatograms of 1972-CH1 Exterior: (a) aliphatic fraction; (b)

aromatic fraction; (c) NSO fraction. Numbers refer to carbon chain length of the n-

alkanes and ketones, Pr = pristane, Ph -- phytane, A -- isoprenoid phenol (MW = 388),

B = isoprenoid phenol (MW -- 402).
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Figure. 2.10. Mass spectra and proposed structures of isoprenoid phenols present in

NSO fraction of hydrothermal oil from the interior of vent 1972-CH 1: (a) compound

A; (b) compound B; (c) compound C. Mass spectra correspond to the peaks labeled in

Fig. 2.9.
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1972-CH1: (a) representative mass fragmentogram for the isoprenoid phenol

compound A' (m/z 194); (b) representative mass fragmentogram for the isoprenoid

phenol compound B' (m/z 208); (c) representative mass fragmentogram for the

isoprenoid phenol compound C' (m/z 222).
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B'; (c) compound C'. Mass spectra correspond to the peaks labeled in Fig. 2.11.
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Figure 2.17. Representative mass fragmentograms rrdz 19) for the triterpenoid

hydrocarbons in the bitumen of DSDP Leg 64 sediments: (e) 481A-18-1 (30-32); (f)

481A-20-1 (110-115); (g) 481 A-22-7 (top of pipe); (h) 481 A-26-CC.
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DSDP Leg 64 sediments: (e) 481A-18-1 (30-32); (f) 481A-20-1 (110-115); (g) 481A-

22-7 (top of pipe); (h) 481 A-26-CC.
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Figure 2.20. Representative mass fragmentograms (m/z 57, 58, 71, 72) for the ketones

in the bitumen of DSDP Leg 64 sediments: (a) 481A-4-2 (93-98); (b) 481 A-8-7 (top of

pipe); (c) 481A-12-4 (55-65); (d) 481A-13-2 (18-27).
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Figure 2.20. Representative mass fragmentograms (m/z 57, 58, 71, 72) for the ketones

in the bitumen of DSDP Leg 64 sediments: (e) 481A-18-1 (30-32); (f) 481A-20-1

(110-115); (g) 481 A-22-7 (top of pipe); (h) 481 A-26-CC.



57

I08"81 _)
122

44.3_

136 ____

I I ! I I" ' ""-'-7_' "_' I ! I u II | u u 'i I''-F" _ T-'';_I ' ' "7---1 I

'_'°_°> A

,22!____:;,'t__

' _-"7-';"_-';-"T"i '"" ""'"_'i

1950 20_}8 2050 21t}0 2150 2200 2251a
65:60 66:40 68:29 78:6e 71:48 73:28 75:08

Figure 2.21. Representative mass fragmentograms (rn/z 122 and m/z 136) for the

isoprenoid phenols in the bitumen of DSDP Leg 64 sediments: (a) 481 A- 12-4 (55-65)

and (b) 481A-18-1 (30-32).
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CHAPTER 3

Radical and Ionic Reactions During Hydrothermal Pyrolysis of Organic Matter :

Implications for the Simulation of Geochemical Processes
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ABSTRACT

The heavy water pyrolysis experiments of Messel shale and model compounds

performed by Hoering have demonstrated that there can be a large exchange of

protons between water and organic compounds during hydrous pyrolysis. There has

not been a satisfactory explanation for these results, especially the aspects of the

extent of deuterium substitution in the n-alkanes and the enrichment of deuterium at

only one end of some molecules.

The following mechanism accounts for the deuterium substitution observed in

the hydrocarbons generated during Messel shale heavy water pyrolysis. Thermal

cracking of the aliphatic kerogen network during hydrous pyrolysis generates n-

alkanes and a-olefins. The a-olefins are quickly converted to internal olefins by acid-

catalyzed double bond isomerization, a process which rapidly incorporates deuterium

into the hydrocarbon skeleton. Deuterium exchange by direct homogeneous radical

exchange with saturated hydrocarbons occurs at a much slower rate. The olefins are

subsequently hydrogenated to fully saturated n-alkanes, but the rate of alkene

isomerization is much greater than the rate of hydrogenation. Aliphatic moieties

bound to the kerogen at one site can form a terminal double bond upon cleavage.

Acid-catalyzed double bond isomerization followed by hydrogenation preferentially

introduces deuterium at only one end of the molecule, resulting in hydrocarbons with

unsymmetric patterns of deuterium incorporation. This mechanism accounts for the

extensive deuterium substitution observed in the generated n-alkanes and also explains

how deuterium substitution can occur at only one end of selected hydrocarbon species.
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INTRODUCTION

The research by Hoering (1984) produced some interesting results concerning

the role of water during laboratory hydrous pyrolysis. Presented below are some key

aspects from that publication, a paper which was divided into three parts :

(I)

(2)

(3)

hydrous pyrolysis of shale kerogen to evaluate the similarities and

differences between artificially derived oils and natural oils,

the pyrolysis experiments in D20 with deuterium used as a tracer to

understand how water interacts in the catagenetic reactions,

pure compound D20 pyrolyses to aid in understanding the

mechanisms of organic matter transformations.

Messel shale was selected for the experiments due to its low thermal history, its high

organic carbon content, and having been a sample for numerous studies. The shale

was powdered and extracted prior to heating. For each experiment the shale was

combined with water or heavy water, sealed under nitrogen in a stainless steel reaction

vessel and heated at 330"C for 72 h.

The n_-alkanes from the D20 pyrolysis were isolated and analyzed by mass

spectrometry to determine the extent of deuterium incorporation. Fig. 3.1 is a

histogram of an unweighted average deuterium distribution for the Cl7 to C29 n-

alkanes generated from the kerogen by hydrous pyrolysis. The substitution ranged

from 0 to at least 14 deuterium atoms for each n_-alkane, with the highest relative

abundances of 4 to 6 deuterium atoms. There was no obvious trend in substitution

pattern as a function of chain length.

The analysis of isoprenoid and branched hydrocarbons generated by the D20

pyrolysis experiments provided additional information about the nature of the

deuterium exchange process. Fig. 3.2 is a histogram showing the relative abundances

of the Cl3 ion fragments from the mass spectrum of pristane generated in the D20

experiment. The bimodal distribution is consistent with a pristane molecule which has

deuterium substituted at only one end of the molecule. The C13 fragment which

contains no deuterium atoms would produce an ion fragment of m/z 183 while the Cj 3

fragment containing the deuterium atoms would produce ion fragments greater than

m/z 183, and in this case maximizes at m/z 190, corresponding to 7 deuterium

substitutions as being the most abundant isomer. The preferential deuterium
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enrichmentto only one endof certainmoleculeswasalsoevident in the analysisof

iso- and anteiso-alkanes. Fig. 3.3 is the partial mass spectrum of 2-methyl
heptadecane,a compoundrepresentativeof the branchedhydrocarbonsproducedin

the pyrolysis experiments. The cluster of ion fragmentsmaximizing at rn/z 247

correspondsto lossof a methyl group with 8 deuteriumsubstitutionsbeing themost

abundant.The clusterat m/z 216 is producedby thelossof a propyl group with 5

deuterium substitutions being the most abundant. Thesepatterns of the mass
fragmentsarealso consistentwith an enrichmentof deuteriumat one end of the

molecule. But contrary to the original interpretation,this moleculeappearsto be

enrichedwith deuteriumat the end wherethebranchingoccurs. Analysisof sterane
andtriterpanehydrocarbonsalsorevealeda preferentialenrichmentat oneendof the

molecule(Hoering,1984).

In an attemptto understandthe mechanismof deuteriumenrichmentin the

hydrocarbons,pyrolyses of somemodel compoundswere performed. Below is a

discussionof theresultsfrom thealkaneandalkeneD20 pyrolysesfrom theoriginal
Hoering(1984)publication.

Docosanewas selectedto study the degreeof deuterium incorporationby
simplehomogeneousexchange.Under the sameheatingconditionsasthosein the

Messelshalepyrolyses(72 hr @ 330°C) therewas a small amount of deuterium

exchangewith the fully saturatedalkane. Fig. 3.4a is a histogramof the results
showing the relative amounts of the deuterium substituted isomers. Another

experimentwasconductedusingtheolefin l -octadecene as the molecular probe. This

compound was chosen since dry pyrolysis experiments usually generate a large

amount of olefins. Under the same reaction conditions the olefin was hydrogenated to

the saturated octadecane, indicating a strongly reducing environment inside the

reaction vessel. Analysis of this product showed that a substantially higher amount of

deuterium incorporation occurred before the olefin was converted into the fully

saturated reaction product octadecane. A histogram of the relative amounts of the

deuterium substituted isomers is shown in Fig. 3.4b. These results indicate that the

deuterium exchange process is enhanced by the presence of a double bond, but the

presence of only one double bond is not sufficient to explain the extent of deuterium

substitution observed in the n-alkanes generated by the D20 Messel shale pyrolysis,

shown in Fig. 3.1.

To explain the deuterium substitution patterns in the pyrolysis experiments, a

free radical chain mechanism was proposed. One set of reactions is shown in Fig. 3.5



62

(Hoering, 1984). This mechanismproposesthat onepart of the multiple deuteration

couldhaveoccurredby thefreeradicalmigrationof theolefin sites.

A re-examinationof the Hoering (1984) deuterium isomer profile databy

numericalmodelingwasperformedby Ross(1992a,b). Heconcludedthatonelikely

explanationfor the deuteriumisomer distribution in the n-alkanes generated in the

D20 Messel shale pyrolysis is by simultaneous deuterium exchange at more than one

site. He suggested a combination of ionic and radical chemistry to explain the results,

shown in Fig. 3.6 (Ross, 1992a), although the details of the actual chemical

mechanisms to result in preferential deuterium substitution at one end of the molecule

could still not be fully explained.

Recent research in pyrolysis and high temperature aqueous chemistry of

hydrocarbons provides some insight into the major reactions that alkanes and alkenes

undergo (Weres et al., 1988; Siskin et al., 1990; Kissin, 1987, 1990; Leif et al., 1992).

These studies point to the importance of both radical and ionic reaction mechanisms

during the pyrolysis of organic matter. This chapter duplicates the original Hoering

(1984) Messel shale pyrolysis experiments and presents results from additional

hydrous pyrolysis experiments which provide evidence for the chemical pathway by

which hydrogen exchange occurs between water and aliphatic hydrocarbons.
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EXPERIMENTAL

Chemicals and samples. H20 pyrolysis experiments were performed using

Burdick and Jackson ultrapure water, and D20 pyrolysis experiments were done using

D20 from Cambridge Isotope Laboratories. The D20 was glass distilled before using.

Aliphatic compounds used in pyrolysis experiments were 1,13-tetradecadiene (purity

> 97), 1-hexadecene (purity > 97%), eicosane (purity 99%), dotfiacontane (n-C32H66,

purity > 97%), and low-density polyethylene (LDPE, purity > 99%). Sublimed

elemental sulfur was used in one of the pyrolysis experiments. The Messel shale used

in the experiments was powdered and Soxhlet extracted with methanol/methylene

chloride for 72 hr prior to the pyrolysis studies. One surface sediment sample from

Guaymas Basin, Gulf of California, was pyrolyzed at 350°C for 72 hr and extracted

with methanol and methylene chloride prior to this study.

Hydrous pyrolysis experiments. Pyrolysis experiments were performed in

Sno-Trik ® T316 stainless steel high pressure pipes rated at 60,000 psig (4080 bar),

sealed with end caps and heated in an air circulating oven set at 330* _+20C. The

reaction vessels with reactant mixtures were placed in a glove bag and flushed with

five volumes of argon. Deoxygenated H20 or D20, prepared by bubbling with argon

gas for 45 minutes, was added and the vessels sealed. Durations of the heating

experiments ranged from I hr to 72 hr (Table 3.1).

Extraction and fractionation. The reaction vessels were removed from the

oven and cooled to room temperature upon completion of the heating cycle. The

reaction vessels were extracted with two 1 mL portions of methanol followed by five 1

mL portions of methylene chloride. The solvents and water from each pyrolysis

experiment were combined in a centrifuge tube and the organic fraction separated and

collected. The water was extracted with two additional portions of methylene chloride

and the two methylene chloride fractions were combined. The methylene chloride was

dried with anhydrous sodium sulfate and was passed through an activated copper

column to remove the elemental sulfur. The solvent was removed to near dryness

using a rotary evaporator at 30°C. The total extract was made up to 2 mL of

methylene chloride and deasphalted in 100 mL of heptane. The asphaltenes were

allowed to precipitate overnight and removed by filtration. The deasphalted fractions

were fractionated by column chromatography (30 cm x 1 cm) packed with 3.8 g

alumina (fully active) over 3.8 g silica gel (fully active). The samples were separated

into three fractions by elution with 50 mL heptane (nonpolar, F1), 50 mL toluene
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(aromatic,F2) and25mL methanol(polar NSO,F3). Separationof the alkanesfrom

the alkenes was done by argentation silica column chromatography. In one

experimentthe normal alkaneswere isolated from the nonpolar fractions by urea

adduction. Hydrogenationof selectedsampleswasdoneby bubblingH2 gasinto the

samplefor 30min. in thepresenceof platinum(IV) oxide (Adam's catalyst).

Gas chromatography. Gas chromatography (GC) of the pyrolysates was

performed with a Hewlett Packard 5890A equipped with a 30 m x 0.25 mm i.d. DB-5

open tubular column (0.25 lma film thickness). The GC oven was heated using the

following program • isothermal for 2 min. at 65°C, 3°/min. to 310°C, and isothermal

for 30 min., with the injector at 290°C, detector at 325°C, and helium as the carrier

gas.

Gas chromatography-mass spectrometry. Gas chromatography-mass

spectrometry (GC-MS) was performed on a Fianigan 9610 gas chromatograph

coupled to a Finnigan 4021 quadrupole mass spectrometer operated at 70 eV over the

mass range 50-650 dalton and a cycle time of 2.0 s. The GC oven temperature was

programmed at isothermal for 2 min. at 65°C, 4"/rain. to 310°C, and isothermal for 30

min., with the injector at 290°C, and helium as the carrier gas. The MS data were

processed with an on-line Finnigan-Incos 2300 computer data system.

Additional analyses were performed on a Hewlett Packard 5890 Series II GC

coupled to a Hewlett Packard 5971 Series Mass Selective Detector (MSD). The GC

was equipped with a 30 m x 0.25 mm i.d. DB-1 open tubular column (0.25 _n film

thickness). The GC oven temperature was programmed at isothermal for 2 min. at

100°C, 5"/min. to 260°C, 10°C/min. to 300°C, and isothermal for 10 min., with an on-

column injector, and helium as the carrier gas. The MS data were processed with a

Hewlett Packard Vectra 486 PC.
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RESULTS AND DISCUSSION

n_z_-_C2_H_H66pyrolysis experiments. To more fully understand the factors

affecting the aqueous high temperature organic chemistry of heavy n-paraffins,

pyrolysis of n-C32H66 with water only or water with inorganic additives has been

studied (Leif et al., 1992). Each experiment was run at 350°C for 72 hr under a

nitrogen atmosphere. It has been shown that extensive cracking, with varying degrees

of alkene formation, occurred under the experimental conditions. The composition of

the products was modified by pH and reactive species such as elemental sulfur and

iron sulfides. Fig. 3.7 shows the gas chromatograms of the total extracts from these

pyrolysis experiments. They are characterized by a broad distribution of cracking

products with a large amount of unreacted starting material. The recovered cracking

products ranged in carbon number from C9 to C31, there was a negligible amount of

gas pressure in each of the reaction tubes which escaped upon opening. The cracking

products in all of the experiments maximized at C16, half the carbon number of the

starting material. The aliphatic fraction consists n-alkanes and n-alkenes. Fig. 3.8a is

the aliphatic fraction of the n-C32H66 - H20 system, consisting of n-alkanes and

several n-alkene isomers. Catalytic hydrogenation of the nonpolar fraction confirms

the presence of only n--alkene isomers (Fig. 3,8b). The large number of n-alkene

isomers is evidence of acid-catalyzed double bond isomerization. The experiment was

repeated in an alkaline environment maintained by the addition of NaOH. The

chromatograms of the nonpolar fraction and hydrogenated nonpolar fraction are

shown in Fig. 3.9a and 3.9b. The low hydrogen ion concentration in the alkaline

system inhibited double bond migration to give a product distribution dominated by

terminal n-alkenes. These results show that the products from these pyrolysis

experiments are the result of primary cracking of n-C32H66 to form terminal alkenes,

followed by secondary acid-catalyzed reactions of these terminal n-alkenes to form a

suite of internal n-alkenes. The extent of double bond isomerization in the water

system indicates that there can be significant proton exchange between water and

hydrocarbons by this pathway.

To measure the amount of proton exchange that can occur by acid-catalyzed

dou.ble bond isomerization, the above experiments were repeated using D20. The

chromatograms of the n-C32H66 -D20 system are shown in Fig. 3.10. As before, the

products consist of n-alkanes and several n-alkene isomers. The saturated and

unsaturated hydrocarbons were separated by AgNO3 column chromatography.
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Deuterium substitution in the n-alkanes was negligible while there was extensive

deuterium substitution in the alkenes. Figure 3.11 shows the mass spectrum of n-El7

of the alkane fraction (Fig. 3.11a) and the mass spectrum of n-C17 from the

hydrogenated alkene fraction (Fig. 3.1 l b). Fig. 3.12 shows the results from the n-

C32H66 -D20 - NaOD system. The alkaline system greatly reduced the amount of

deuterium substitution in the hydrocarbons. Figure 3.13 shows the mass spectrum of

_n-Cl7 of the alkane fraction (Fig. 3.13a) and the mass spectrum of n-Cl7 from the

hydrogenated alkene fraction (Fig. 3.13b). These results indicate that no deuteration

occurred under these conditions, neither in the alkane fraction nor in the alkene

fraction. Since alkaline conditions should inhibit the acid-catalyzed chemistry but not

affect the free radical chemistry, the above experiments indicate that direct exchange

between D20 and n-alkanes does not occur under these conditions. The major

pathway for the deuterium exchange under these conditions appears to be an ionic

rather than a radical mechanism.

Pyrolysis of 1,13-tetradecadiene_ 1-hexadecene and eicosane in D2_QO. A time

series in D20 was conducted to measure the relative rates of deuterium incorporation

for an alkadiene, an alkene and an alkane. The gas chromatograms for the aliphatic

fractions are shown in Fig. 3.14. Hydrogenation of this fraction produced only

alkanes (Fig. 3.15). The patterns of deuterium incorporation for the three

hydrocarbons for each experiment are shown in Figs. 3.16 to 3.20.

Low density polyethylene pyrolysis. Pyrolysis experiments investigating the

aqueous organic hydrothermal chemistry was extended to include low density

polyethylene (LDPE), a highly cross-linked aliphatic polymer. This polymer was

chosen since its structure resembles the chemically resistant aliphatic biopolymer

material of kerogen thought to be the most important precursor of n-alkanes in crude

oils (Burlingame et al., 1969; Simoneit and Burlingame, 1973; Goth et al., 1988;

Tegelaar et al., 1989a,b,c). Hydrous pyrolysis of LDPE was performed under alkaline

conditions to inhibit the secondary acid-catalyzed reactions of the alkene pyrolysis

products. No gas pressure was detected at the termination of the reaction. Fig. 3.21a

is the gas chromatogram of the aliphatic fraction. The products are dominated by

homologous series of terminal n-alkenes and n-alkanes ranging from CI0 to C37,

maximizing at C16. The absence of any appreciable amount of ethylene is due to the

predominance of thermal degradation reactions of the aliphatic polymer network

rather than depolymerization reactions. This distribution of pyrolysis products

resembles the product distributions from flash pyrolysis experiments of LDPE



67

(SugimuraandTsuge,1978). Catalytichydrogenationof this fractionis shownin Fig.

3.21b,showinga smooth,homologousseriesof n-alkanes almost indistinguishable

from distributions found in the n-C32H66 pyrolyses or any highly aliphatic oil. The

results from this experiment indicate that hydrous pyrolysis of LDPE produces n-

alkanes and terminal n-alkenes as primary cracking products, with a small amount of

branched hydrocarbons formed.

Pyrolysis of 1,13-tetradecadiene polymerization product. Polymerization of

1,13-tetradecadiene occurred during a 330°C pyrolysis experiment with D20, the first

72 hr pyrolysis experiment done in the small reaction vessels. The polymer lined the

walls of the reaction vessel but was easily removed without breakage. It was a thin,

flexible, translucent polymer. It is likely that the interior of the vessel was

catalytically active and aided in the polymerization of the a,t_-olefin into presumably

an aliphatic and highly cross-linked polymer. A portion of the polymer was pyrolyzed

under identical time and temperature conditions with H20 as the medium. The results

of the pyrolysis experiment are shown in Fig. 3.22. The m/z 99 mass fragmentogram,

characteristic of n-alkanes, shows that the major pyrolysis products of the C14

polymer are n-alkanes.

The previous pyrolysis experiments with n-C32H66 and aliphatic polymers

have demonstrated that hydrous pyrolysis of aliphatic material produces n-alkanes and

terminal n__-alkenes. Secondary reactions of the alkenes (i.e. bond isomerization

reactions) can rapidly introduce protons (or deuterons) from the water (or heavy

water) into the hydrocarbons. To test whether this is a feasible chemical pathway for

the deuterium incorporation observed in the original Hoering (1984) pyrolyses of

Messel shale with D20, the pyrolysis was repeated under the same time and

temperature conditions. Since only saturated hydrocarbons were observed in the

original pyrolyses, time series experiments were run to determine the relative rates of

alkene isomerization versus alkene hydrogenation and deuterium incorporation.

Messel. shale pyrolysis - repeat of Hoering (1984) experiment. The Messel

shale - D20 pyrolysis experiments of Hoering (1984) were repeated using the Parr

reaction vessel and the stainless steel reaction pipes. The extent of deuterium

incorporation into the n-alkanes was measured and there was no difference in the

extent of deuterium substitution from the Parr reaction vessel or the pipe reactors. The

deuterium substitution for the C!7 to C29 n-alkanes is shown in Table 3.2. Shown in

Fig. 3.23 is an unweighted average of the C17 tO C29 n-alkane deuterium substitution

distribution. Comparing these results to the original Hoering distribution shown in
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Fig. 3.I, thereis adifferencein thedistributionof deuteriumsubstitution,primarily in

theDOto D3 range. Theseresultssuggestthat therewasamuchsmalleramountof n-

alkanes formed in the DO to D3 range than in the experiment performed by Hoering

(1984). But in general a very large amount of deuterium incorporation has occurred in

the n-alkanes that were generated in the heating experiments.

Messel shale H?O pyrolyses - composition of aliphatic molecular probes.

Two time series experiments were performed involving Messel shale in the pipe

reaction vessels. The first series in H20 was conducted to measure the relative rates

of alkene isomerization versus hydrogenation for an alkadiene and an alkene when

pyrolyzed in the presence of Messel shale. The gas chromatograms for the aliphatic

fractions are shown in Fig. 3.24. Hydrogenation of this fraction produced alkanes and

a minor amount of branched/cyclic compounds (Fig. 3.25). Data from this series are

found in Table 3.3 and show that the rate of acid-catalyzed alkene isomerization is

much faster than the rate of hydrogenation.

Messel shale D?O pyrolyses - composition of aliphatic molecular probes. The

second time series was conducted in D20 to measure the relative rates of alkene

isomerization and deuterium incorporation for an alkadiene, an alkene and an alkane

when pyrolyzed in the presence of Messel shale. The gas chromatograms for the

aliphatic fractions are shown in Fig. 3.26. Hydrogenation of this fraction produced

alkanes (Fig. 3.27). The patterns of deuterium incorporation for the three

hydrocarbons for each experiment are shown in Figs. 3.28 to 3.32, and data from this

series are summarized in Table 3.4. This series has shown that the rate of acid-

catalyzed alkene isomerization is slightly slower in D20 than in H20. Deuterium was

incorporated in the saturated alkane, interpreted as being due exclusively to a radical

exchange process, but the degree of deuterium incorporation in the saturated

hydrocarbon is much slower than in either of the olefin species.

Messel shale H;_O and D20 pyrolyses - composition of aliphatic hydrocarbons

released from kerogen. Additional information about the process of hydrous pyrolysis

was obtained in the time series experiments by looking at the n-alkanes and

triterpenoid hydrocarbons released from the Messel shale kerogen. Fig. 3.33 shows

the range of pyrolysis products starting at n-C23H48 to n-C32H66. Fig. 3.34 shows the

GC traces of the 1, 5, and 10 hr experiments at higher concentrations. After 1 hr a

homologous series of terminal n-alkenes and n-alkanes are generated from the kerogen

in an approximate ratio of 1:2. The 5 and 10 hr experiments shows evidence of alkene
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isomerizationanda decreasein thealkeneto alkaneratio. Alkeneswerenot detected

in eitherthe36or the72hr reactions.

Freealkeneswerealsodetectedin thetriterpenoidhydrocarbonsreleasedfrom

the kerogen. Fig. 3.35 is the m/z 191 massfragmentogramscharacteristicof the

triterpenoidhydrocarbonsreleasedin theMesselshaleH20 time seriesexperiments.

After 1 hr thedominantcompoundsin the m/z 191fragmentogramare the hopenes.
The massspectraof the hopenesindicate that the pointsof unsaturationall occur in

the D or E rings of the C29 and C30 hopanes, and in the alkyl side chains of the

hopanes C31 or greater. This is consistent with being bound to the kerogen at this end

of the pentacyclic structure. The hopenes are were not detected after 10 hr. These

triterpenoid biomarker distributions show the progression from an thermally immature

distribution to one characteristic of the earliest stages of oil generation. After 10 hr

there is not much change in the biomarker pattern, the only obvious trends are the

progressive change in the Ts / Tm ratio and the slight isomerization of the C31ct_(R)

hopane to the C31_t_(S).

Fig. 3.36 is the rn/z 191 mass fragmentogram showing the triterpenoid

hydrocarbons released in the Messel shale after 72 hr in D20. Selected mass spectra

of the major hopanes are presented in Fig. 3.37. These mass spectra confirm that the

deuterium incorporation has occurred in the D and E rings or the side chains of the

hopane structures. The most likely explanation for these substitution patterns is

deuterium incorporation has occurred by both isomerization and during the process of

saturating the double bond. A homogeneous radical exchange process would produce

a random deuterium distribution pattern in all rings of the pentacyclic structure, which

would be distinguishable from the mass spectra.

Guaymas Basin sediment D20 pyrolysis - composition of aliphatic molecular

probes. One 10 hr experiment was performed where the three aliphatic probes were

spiked on a sediment from the Guaymas Basin hydrothermal system. The deuterium

substitution patterns for the three molecular probes are shown in Fig. 3.38. No

deuterium was incorporated in the saturated eicosane but a large amount of deuterium

was incorporated in the alkenes. These deuterium substitution patterns are unique in

that they show that extensive deuterium incorporation has occurred in those alkenes

that have isomerized. This suggests that there is a strong catalytic effect associated

with the sediments which promotes extensive double bond isomerization once the

alkenes begin to isomerize.
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Elemental sulfur D20 pyrolysis - composition of aliphatic molecular probes.

One 10 hr experiment was performed where the three aliphatic probes were combined

with 0.5 g elemental sulfur. The deuterium substitution patterns for the three

molecular probes are shown in Fig. 3.39. Although this was only a 10 hr experiment,

extensive deuteration occurred, even in the saturated alkane. This set of results

demonstrates the large degree to which sulfur can greatly accelerate both the ionic and

radical exchange processes.

The procedure of laboratory hydrous pyrolysis is one method used to study the

transformations of sedimentary organic matter and source rocks to petroleum. These

experiments are performed over short durations but at elevated temperatures to

compensate for the lower temperature organic reactions which occur over geological

time scales. The presence of water is generally regarded as an important component

of pyrolysis sirnc..lations by generating aliphatic-rich pyrolysates which are very low or

absent in olefins, as opposed to the olefin rich pyrolysates formed by dry pyrolyses

(Lewan et al., 1979). Ever since Lewan and co-workers (1979) used water in their

experiments and named the procedure hydrous pyrolysis, the actual role of water has

been a point of controversy, especially when oil-like pyrolysates have been formed

under anhydrous conditions (Comet et al., 1986). But it has been shown that in

general under aqueous conditions, these pyrolysates resemble natural oils (Eglinton et

al., 1986; Eglinton and Douglas, 1988; Lewan, 1983; Lewan et al., 1986). Water also

has the important ability of facilitating the ionic mineral reactions which are primarily

responsible for fixing the Eh and pH of a system (Eugster, 1986; Shock, 1990).

Although Lewan and co-workers (1979) have shown that water does not increase the

amount of hydrogen to the organic material, hydrogen exchange between water and

hydrocarbons can occur.

The original D20 pyrolysis experiments performed by Hoering (1984)

identified the extent to which deuterium from the D20 is exchanged with organic

matter and incorporated into the aliphatic hydrocarbons generated under hydrous

pyrolysis conditions for 72 hr at 330°C. By using D20 as a medium instead of H20,

insight into what role water plays in this simulated maturation process was obtained.

But the free radical mechanism proposed does not explain the degree to which the

deuterium is incorporated (Ross, 1992a,b). The experiments performed by Hoering

were duplicated in this study and additional experiments were performed with H20

and D20.
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In thepresentseriesof experimentsthemajortypesof chemical reactions and

their relative rates leading to the pyrolysate distributions of aliphatic material have

been identified. During hydrous pyrolysis the primary products generated by the

thermally-induced bond cleavages of the aliphatic components are n-alkanes and

terminal n-alkenes, the same products generated during the Curie-point pyrolyses of

hydrocarbons and aliphatic-rich materials (Tegelaar et al., 1989a,b,c). The terminal n-

alkenes can undergo secondary isomerization and hydrogenation reactions. The

relative rates of the primary and the two competing secondary reactions depend on the

experimental conditions. Thermal destruction of the aliphatic kerogen network should

also produce double bonds in the kerogen which can undergo isomerization reactions

by which deuterium is directly incorporated into the kerogen network.

Fig. 3.40 shows the proposed chemical pathways by which n-C32H66 reacts in

the presence of H20 and H20 - NaOH. Fig. 3.z_1 presents the analogous reactions

when performed in D20, showing the pathway in which deuterium is incorporated into

the aliphatic hydrocarbon by acid-catalyzed double bond isomerization. When two

double bonds are present, as in the molecular probe experiments in D20 involving

1,13-tetradecadiene, acid-catalyzed double bond isomerization occurs simultaneously

to greatly accelerate the amount of deuterium incorporated into the hydrocarbon (Fig.

3.42).

When these molecular probes were pyrolyzed on a sediment from the Guaymas

Basin, a deuterium distribution pattern resulted which did not resemble those for

samples pyrolyzed in water only. This distribution is interpreted to have resulted from

the catalyzed isomerization by the clay minerals present in the sediments. Those

alkenes which were isomerized were extensively isomerized and incorporated a large

amount of deuterium (Fig. 3.43). There was still a large amount of alkene that was not

isomerized.

A proposed pathway for the generation of n-alkanes and terminal n-alkenes

during the hydrous pyrolysis of LDPE is shown in Fig. 3.44. This pathway was

proposed since primarily n-alkanes and terminal n-alkenes are generated, and no

appreciable amounts of a,_-alkadienes were observed. The weakest bonds of an

aliphatic cross-linked polymer such as LDPE are at the branch points, where there is a

tertiary carbon. Thermal homolytic bond dissociation at one of these branch points is

shown in Fig. 3.44. A hydrogen abstraction by the released primary radical results in

the formation of an n-alkane with a secondary radical somewhere in the polymer

network. The secondary radicals in the polymeric network, formed by the bond
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scissionsor H-abstractions,would then undergo13-scission,breaking the aliphatic
cross-link to form an alkanechain and a terminalalkenechain still bondedto the

polymer. With the weakestlinks still being thetertiarycarbons,bondbreakingat the

branchpoints would still be favoredandthe processwould continue,resulting in n-

alkanes and terminal n-aikenes. The gas chromatograms of the LDPE pyrolysis in

Fig. 3.21 show the production of other pyrolysis products, presumably branched

hydrocarbons, but these were minor products and most likely the result of other

competing radical cracking or isomerization reactions. Compared to Curie-point

pyrolysis, the pyrolysis temperatures used in this study are comparatively milder and

therefore bond cleavages can be more selective, preferentially breaking at branch

points. Curie-point pyrolyses of LDPE (Wampler and Levy, 1987; Wampler, 1989)

and aliphatic-rich kerogen (Goth et al., 1988) produce three homologous series, n-

alkanes, terminal n-alkenes and et,_-alkadienes, indicating a more random thermal

destructive process breaking secondary and tertiary carbon-carbon bonds.

The proposed chemical pathway for the hydrous pyrolysis of LDPE can be

used to explain the extent of deuterium incorporation observed in the D20 Messel

shale pyrolyses. The resulting pyrolysate compositions are interpreted to be due to

radical cracking of the polymethylene chains from the kerogen. The carbon - carbon

bond scission produces free n-alkanes and terminal n-alkenes, but also saturated and

terminally unsaturated alkyl chains still bound to the kerogen. Acid-catalyzed double

bond isomerization of the double bonds occurs at a rate faster than hydrogenation of

the double bond (Fig. 3.24), and when the pyrolysis experiment is performed in D20,

deuterium can be rapidly incorporated into the aliphatic hydrocarbons and

polymethylene kerogen network. Once the alkyl chain is hydrogenated, it is relatively

unreactive and deuterium incorporation occurs by radical exchange, a chemical

pathway where the rate of exchange is much slower (Figs. 3.28 - 3.32).

The results suggest that the primary mode of deuterium incorporation into

hydrocarbons occurs during acid-catalyzed double bond isomerization of alkene

intermediates by 1,2-shifts of carbocations. Radicals would not be expected to

undergo 1,2-shifts because in the rearranging radical, one electron must go into the

antibonding orbital in the three-centered transition state, and therefore the transition

state would be destabilized (Wilt, 1973). The formation of intermediate branched and

isoprenoid alkenes, terminal n-alkenes, and even _,oa-alkadienes from kerogen is

consistent with the findings from the structure elucidations of kerogens by chemical

methods. Carboxylic acids, branched carboxylic acids, a,_o-dicarboxylic acids, and
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isoprenoidacidsarecommonproductsfrom kerogenoxidations(Burlingameet al.,
1969;Djuricic et al., 1971;Simoneitand Burlingame,1973;Vitorovic, 1980). Since

branchingpoints aresusceptibleto oxidation, monocarboxylicacidsand isoprenoid

acids would be formed from alkyl groups and isoprenoid groups, respectively,
attachedto thekerogenmatrixat onepoint. _x,ttv-Dicarboxylicacidswould beformed

asa result of analkyl "bridge" which is attachedto thekerogenat two points. Curie-

point pyrolysisconfirms thatthis highly aliphaticpolymer is presentin Messelshale

kerogen(Goth et al., 1988). The conditions during hydrouspyrolysis experiments

may causesimilar fragments,but releaseprimarily n-alkanes and terminal n-alkene

groups, analogous to the proposed pathway for the thermal destruction of LDPE under

hydrous pyrolysis conditions. These double bonds, in the free pyrolysates and the

bound aliphatic network, would then undergo acid-catalyzed double bond

isomerization prior to hydrogenation of the double bond. Fig. 3.45 is a sequence of

reactions which shows the proposed primary mode of deuterium incorporation into

hydrocarbons during Messel shale pyrolysis with D20.

Water is seen as a medium in which the rate at which the inorganic ionic

reactions occur is accelerated relative to dry pyrolysis. The system is driven more

rapidly to equilibrium in the presence of water. Under these temperature and pressure

conditions, water is also a good solvent for organic molecules. When hydrous

pyrolysis is performed with reduced minerals (i.e. reduced sulfur species) the whole

system can quickly become reducing, favoring the hydrogenation of unsaturated

hydrocarbons. But this hydrogenation process is most likely a surface process, similar

to the process of catalytic hydrogenation. So even under reducing conditions, as in the

pyrolyses of Messel shale where iron sulfides are present, the hydrogenation of _n-

alkenes becomes a diffusion limited reaction, and the rate of acid-catalyzed double

bond isomerization can be much faster than the rate of hydrogenation. The balance of

competing radical and ionic reactions is important when trying to simulate geological

processes under greatly accelerated laboratory conditions.
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CONCLUSIONS

The pyrolysis of Messelshale in D20 generateshydrocarbonswith a large

amount of deuterium. The exchange process is explained by double bond

isomerizationof alkenesformedby the pyrolytic breakdownof thealiphatic kerogen

network. Themajorpointsare:

(1)

(2)

(3)

(4)

(5)

deuterium exchange between D20 and saturated alkanes is negligible

relative to the exchange which occurs by acid-catalyzed isomerization

of a double bond under the same conditions,

the extent of deuterium substitution during the Messel shale D20

pyrolysis experiment can be explained by acid-catalyzed double bond

isomerization of intermediate alkene species,

the preferential deuterium enrichment at one end of a molecule would

result from deuterium exchange at the site of one double bond,

the formation of alkene species has been observed during the hydrous

pyrolysis of Messel shale,

the formation of intermediate alkene species is consistent with the

results from the structural elucidations of kerogens by chemical

oxidation, Curie-point pyrolysis experiments and hydrous pyrolysis of

hydrocarbons and synthetic polymers under various conditions.

This mechanism explains the amount of deuterium incorporation into alkanes

during Messel shale pyrolyses with D20 and explains how deuterium can become

enriched at one end of a molecule. By studying simple systems, relevant chemical

pathways can be proposed and applied to the understanding of more complex systems.
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Table 3.1. Hydrous pyrolysis experiments performed at 330°C.

Duration (hr) Reactants

72

72

72

72

72

72

1

5

10

36

72

1

5

10

36

72

1

5

10

36

72

10

10

Messel Shale, H20,

Messel Shale, H20,

Messel Shale, H20,

Messel Shale, H20,

Messel Shale, D20,

Messel Shale, D20,

Messel Shale, D20,

Messel Shale, D20,

D20, n-C32H66

D20, n-C32H66, NaOD

H20, LDPE

D20, 1,13-tetradecadiene

H20, C14 polymer

Messel Shale, D20

D20, 1,13-tetradecadiene, 1-hexadecene,

D20, 1,13-tetradecadiene, 1-hexadecene,

D20, 1,13-tetradecadiene, 1-hexadecene,

D20, 1,13-tetradecadiene, 1-hexadecene,

D20, 1,13-tetradecadiene, 1-hexadecene,

Messel Shale, H20, 1,13-tetradecadiene,

1,13-tetradecadiene,

1,13-tetradecadiene,

1,13-tetradecadiene,

1 13-tetradecadiene,

1 13-tetradecadiene,

1 13-tetradecadiene,

1 13-tetradecadiene,

1 13-tetradecadiene,

eicosane

eicosane

eicosane

eicosane

eicosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, elcosane

1-hexadecene, e_cosane

Messel Shale, D20, 1 13-tetradecadiene, 1-hexadecene, elcosane

Guaymas Basin Sediment, D20, 1,13-tetradecadiene,

1-hexadecene, eicosane

Sulfur, D20, 1,13-tetradecadiene, 1-hexadecene, eicosane
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Table 3.2. Extent of deuterium substitution in normal hydrocarbons produced from

the pyrolysis of Messel shale at 330°C for 72 hr with D20.

Carbon Number

Deuterium 17 18 19 20 21 22 23 24 25 26 27 28 29
Abundance

DO 10 21 4 7 6 5 4 6 3 5 5 7 8
DI 30 41 28 25 27 27 55 17 10 14 18 26 11
D2 54 53 49 65 45 46 26 27 83 31 47 37 25
D3 84 68 76 82 68 75 100 83 48 99 67 46 34
D4 87 96 82 96 82 85 66 78 83 93 79 52 52
D5 100 99 100 100 86 100 66 89 94 93 84 78 62
D6 92 100 89 87 100 99 68 100 98 96 100 100 54
D7 89 97 92 87 91 85 59 92 94 81 79 91 100
D8 86 95 53 88 70 95 54 85 100 90 89 88 79
D9 79 73 74 74 80 81 50 76 83 100 53 81 62
D10 72 68 76 70 62 69 39 71 73 78 81 66 66
Dll 59 64 62 49 55 58 32 63 54 60 50 75 52
DI2 42 56 33 39 44 42 36 53 65 49 48 43 32
D13 37 54 71 47 39 45 22 49 52 49 44 60 43
D14 16 31 38 34 25 25 15 24 40 36 27 22 37
D15 11 27 31 27 22 25 9 14 25 19 23 19 18
D16 8 12 20 19 10 14 4 10 10 31 19 15 12
DI7 7 15 11 10 12 12 0 10 15 19 10 15 10
D18 8 6 9 4 7 10 0 10 8 4 8 9 12
D19 2 8 7 2 3 5 0 10 6 12 8 6 3
D20 0 0 4 0 0 3 0 0 4 9 3 9 6

D21 0 0 0 0 0 0 0 0 0 0 0 3 0
D22 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 3.3. Data from the pyrolysis of 1,13-tetradecadiene and 1-hexadecene

molecular probes with Messel in H20 at 330°C.

1,13-tetradecadiene 1-hexadecene

Time (hr) % Isomerized % Hydrogenated % Isomerized % Hydrogenated

1 12.6 0 5.7 0

5 89.9 11.6 70 22.2

10 96.2 13.6 84.8 33

36 97.2 50.5 91.9 65.8

72 100 94 100 96
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Table 3.4. Data from the pyrolysis of 1,13-tetradecadiene and 1-hexadecene

molecular probes with Messel in D20 at 330°C.

1,13-tetradecadiene 1-hexadecene

Time (hr) % Isomerized % Hydrogenated % Isomerized % Hydrogenated

I 9.9 0 5.5 0

5 74.4 0 45.1 13.6

10 85.3 33.1 58.7 25.6

36 n.d. a 67 n.d. a 71

72 n.d. a 88.3 n.d. a 87.9

Not determined due to poor chromatographic peak shape as a result of deuterium

substitution.
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10

Messei Shale + D20
C17 to C29 n-Alkanes

72 hr @ 330 C

(Hoering, 1984)

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14

Deuterium Substitution

Figure 3.1. Overall average distribution of deuterium substitution in n-alkanes from

C17 to C29 generated from the D20 pyrolysis of Messel shale (after Hoering, 1984).
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Figure 3.2. Distribution of the relative abundances of C13 ion fragments from pristane

generated in the Messel shale D20 pyrolysis (after Hoering, 1984).
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Figure 3.3. The partial mass spectrum of deuterated 2-methylheptadecane which was

generated in the Messel shale D20 pyrolysis (Hoering, 1984).
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10o

I0

Octadecane + D20
+ Messel Shale

72 hr @ 330 C
(Hoering, 1984)

I 2 3 4 5 6 7 8 9 10 II 12 13 14

Deuterium Substitution

100

l-Oetadecene + D20
+ Messel Shale

72 hr @ 330 C

(Hoering, 1984)

I 2 3 4 5 6 7 $ 9 10 I1 12 13 14

Deuterium Substitution

Figure 3.4. Distribution of deuterium substitution in the products of the molecular

probe experiments, 330*C for 72 h • (a) pyrolysis of docosane and D20 and (b)

pyrolysis of l-octadecene and D20 (after Hoering, 1984).
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H o + D20_-_-D • + HDO.

Olefin formation and

Primary radical chain propagation

H H H H H H

R--C--C--C" , R--C--C = CH + H"

H H H H

H H H H H H

R--C_C = CH + D'--,R_C_C_CD + H"

H H - H

H H H H H H

R--C--C--C D---, R--C = C_C D + H"

H • I-1 H

H H H H H H

R_C = C--CD + D'---_ R--C_C_CD

H " D H

H H H H H H

--C--C--CD + D'_--C--C--CD or

- D H D D H

Chain termination

2D---* D2

Figure 3.5. Set of reactions proposed by Hoering (1984) to explain the deuterium

exchange process, includes only free radical chemistry.
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Initiation

Propagation

kerogen --, R--CI-:I--CH2--CH2--R

D20 + PhOH -, HOD + PhOD

R--CIZI--CH2--CH2--R + PhOD _ R--CHD--CH2--CH2--R + Ph0

PhO + R--CHD---CH2--CH_--R --,R--CHD--CH2--CIZI--R + PhOH

R--CHD--CH2--CIZI--R + PhOD ---,etc.

Figure 3.6. Set of reactions proposed by Ross (1992a) to explain the deuterium

exchange process, includes ionic and free radical chemistry.
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-- Time

Figure 3.7. Gas chromatograms of the total extracts from the hydrous pyrolysis

experiments of n-C32H66 at 350°C : (a) H20 - n-C32H66;(b) H20 - n-C32H66 - NaCI;

(c) H20 - n-C32H66 - HC1;( d)H20 - n-C32H66 - NaOH;( e)H20 - n-C32H66 - NH4CI;

(f) H20 - n-C32H66- Na2SO4; (g) I-I20 - n_-C32H66- Sulfur;(h) H20 - n__-C32H66-

Sulfide. Numbers refer to carbon chain lengths of n-alkanes.
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--hexadecane

_hexadecene isomers
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34
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Figure 3.8. Gas chromatograms of the H20 - n-C32H66 system • (a) nonpolar fraction

before catalytic hydrogenation; (b) nonpolar fraction after catalytic hydrogenation.

Numbers refer to carbon chain lengths of n-alkanes.
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Figure 3.9. Gas chromatograms of the H20 - n-C32H66 - NaOH system" (a) nonpolar

fraction before catalytic hydrogenation; (b) nonpolar fraction after catalytic

hydrogenation. Numbers refer to carbon chain lengths of n-alkanes.
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Figure 3.10. Gas chromatograms of the D20 - n-C32H66 system :(a) nonpolar

fraction; (b) alkane fraction; (c) alkene fraction; (d) alkene fraction after catalytic

hydrogenation. Numbers refer to carbon chain lengths of n-alkanes.
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Figure 3.11. Mass spectra of n-C17H36 from the D20 -n-C32H66 system :(a) alkane

fraction; (b) hydrogenated alkene fraction.
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Figure 3.12. Gas chromatograms of the D20 -n-C32H66 - NaOD system :(a)

nonpolar fraction; (b) alkane fraction; (c) alkene fraction; (d) alkene fraction after

catalytic hydrogenation. Numbers refer to chain lengths of n-alkanes.
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Figure 3.13. Mass spectra of n_-C17H36 from the D20 - n__-C32H66 -NaOD system :(a)

alkane fraction; (b) hydrogenated alkene fraction.
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Figure 3.14. Gas chromatograms of the aliphatic fraction from the pyrolyses of 1,13-

tetradecadiene, 1-hexadecene and eicosane with D20 at 330°C: (a) 1 hr; (b) 5 hr; (c)

10 hr; (d) 36 hr; (e) 72 hr. I.S. = internal standard (C24D50).
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Figure 3.15. Gas chromatograms of the hydrogenated aliphatic fraction from the

pyrolyses of 1,13-tetradecadiene, l-hexadecene and eicosane with D20 at 330°C: (a) 1

hr; (b) 5 hr, (c) 10 hr; (d) 36 hr; (e) 72 hr.
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I0

1,13-Tetradecadiene + D20
1 hr @ 330 C

0 •

DO DI D2 D3 I)4 D5 D6 137 D8 D9 DIODIIDI2DI3DI4DI5DI6D17DISDI9D20D21D22

Deuterium Substitution
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Eicosane + D20

1 hr @ 330 C

DO D1 D2 D3 D4 D5 D6 D7 I)8 139 DIODIIDI2DI3DI4DI5DI6DI7DI8DI9D20D21D22

Deuterium Substitution

Figure 3.16. Histograms showing the extent of deuterium substitution after pyrolysis

in D20 for 1 hr at 330°C" (a) 1,13-tetradecadiene; (b) 1-hexadecane; (c) eicosane.
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Figure 3.17. Histograms showing the extent of deuterium substitution after pyrolysis

in D20 for 5 hr at 330°C - (a) 1,13-tetradecadiene; (b) 1-hexadecane; (c) eicosane.
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1,13-Tetradecadiene + D20
10 hr @ 330 C
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Figure 3.18. Histograms showing the extent of deuterium substitution after pyrolysis

in D20 for 10 hr at 330°C • (a) 1,13-tetradecadiene; (b) 1-hexadecane; (c) eicosane.
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Figure 3.19. Histograms showing the extent of deuterium substitution after pyrolysis

in D20 for 36 hr at 330°C • (a) 1,13-tetradecadiene; (b) 1-hexadecane; (c) eicosane.
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Figure 3.20. Histograms showing the extent of deuterium substitution after pyrolysis

in D20 for 72 hr at 330°C • (a) 1,13-tetradecadiene; (b) 1-hexadecane; (c) eicosane.
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Figure 3.21. Gaschromatogramsfrom thepyrolysis of LDPE in H20 for 72 hr @

330"C: (a) aliphatic fraction; (b) hydrogenatedaliphatic fraction. Numbersrefer to

carbonchain lengthsof_n-alkanes.
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Figure 3.22. Mass fragmentogram m/z 99, representative of n-alkanes, for the

pyrolysis of the C14 polymer. Numbers refer to carbon chain lengths of n-alkanes.
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Figure 3.23. Overall average distribution of deuterium substitution in n-alkanes from

C17 to C29 generated from the D20 pyrolysis of Messel shale (this research).
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Figure 3.24. Gas chromatograms of the aliphatic fraction from the pyrolyses of 1,13-

tetradecadiene, 1-hexadecene and eicosane spiked on Messel shale in H20 at 330°C:

(a) 1 hr; (b) 5 hr; (c) 10 hr; (d) 36 hr; (e) 72 hr. I.S. = internal standard (C24D50).
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Figure 3.25.

J
Gas chromatograms of the hydrogenated aliphatic fraction from the

pyrolyses of 1,13-tetradecadiene, 1-hexadecene and eicosane spiked on Messel shale

in H20 at 330°C: (a) 1 hr; (b) 5 hr; (c) 10 hr; (d) 36 hr; (e) 72 hr. I.S. = internal

standard (C24D50).
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Figure 3.26. Gas chromatograms of the aliphatic fraction from the pyrolyses of 1,13-

tetradecadiene, 1-hexadecene and eicosane spiked on Messel shale in D20 at 330°C:

(a) 1 hr; (b) 5 hr; (c) 10 hr; (d) 36 hr; (e) 72 hr. I.S. -- internal standard (C24D50).
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Figure 3.27. Gas chromatograms of the hydrogenated aliphatic fraction from the

pyrolyses of 1,13-tetradecadiene, 1-hexadecene and eicosane spiked on Messel shale

in D20 at 330°C: (a) 1 hr; (b) 5 hr; (c) 10 hr; (d) 36 hr; (e) 72 hr. I.S. _ internal

standard (C24D50).
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Figure 3.28. Histograms showing the extent of deuterium substitution after pyrolysis

on Messel shale in D20 for 1 hr at 330°C • (a) 1,13-tetradecadiene; (b) l-hexadecane;

(c) eicosane.
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Figure 3.29. Histograms showing the extent of deuterium substitution after pyrolysis

on Messel shale in D20 for 5 hr at 330"C • (a) 1,13-tetradecadiene; (b) l-hexadecane;

(c) eicosane.
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Figure 3.30. Histograms showing the extent of deuterium substitution after pyrolysis

on Messel shale in D20 for 10 hr at 330°C • (a) 1,13-tetradecadiene; (b) 1-hexadecane;

(c) eicosane.
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Figure 3.31. Histograms showing the extent of deuterium substitution after pyrolysis

on Messel shale in D20 for 36 hr at 330°C • (a) 1,13-tetradecadiene; (b) l-hexadecane;

(c) eicosane.
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Figure 3.32. Histograms showing the extent of deuterium substitution after pyrolysis

on Messel shale in D20 for 72 hr at 330°C • (a) 1.13-tetradecadiene; (b) i -hexadecane;

(c) eicosane.
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Figure 3.33. Gas chromatograms for the pyrolysis products released from the Messel

shale kerogen during the pyrolyses in H20 at 330°C: (a) 1 hr; (b) 5 hr, (c) 10 hr; (d) 36

hr; (e) 72 hr. Numbers refer to carbon chain lengths of n-alkanes. I.S. -_ internal

standard (n-C32D66).
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Figure 3.34. Gas chromatograms for the pyrolysis products released from the Messel

shale kerogen during the pyrolyses in H20 at 330°C: (a) 1 hr; (b) 5 hr; (c) 10 hr. Same

samples as in Fig. 3.33 but concentration increased to show components in lower

concentration. Numbers refer to carbon chain lengths of n-alkanes. I.S. -- internal

standard (n-C32D66).
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Figure 3.35. Mass fragmentogram m/z 191 representing triterpenoid hydrocarbons

released from the Messel shale kerogon during the pyrolyses in H20 at 330"C.--(a) I

hr; (b) 5 hr; (c) 10 hr; (d) 36 hr; (e) 72 hr.
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Figure 3.36. Mass fragmentogram m/z 191 representing triterpenoid hydrocarbons

released from the Messel shale kerogen during the pyrolyses in D20 for 72 hr at

330°C.
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Figure 3.37. Selected mass spectra of polydeuterated triterpenoid hydrocarbons
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Figure 3.38. Histograms showing the extent of deuterium substitution after pyrolysis

of molecular probes on Guaymas Basin sediment in D20 for 10 hr at 330°C • (a) 1,13-

tetradecadiene; (b) 1-hexadecane; (c) eicosane.
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Figure 3.39. Histograms showing the extent of deuterium substitution after pyrolysis

of molecular probes with 0.50 g elemental sulfur in D20 for 10 hr at 330"C • (a) 1,13-

tetradecadiene; (b) l-hexadecane; (c) eicosane.
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Figure 3.40. Set of proposed reactions showing a simplified version of the major

primary and secondary reactions occurring during the pyrolysis of n-C32H66 in H20.
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Figure 3.41. Set of proposed reactions showing a simplified version of the major

primary and secondary reactions occurring during the pyrolysis of n-C32H66 in D20.
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Figure 3.42. Set of proposed reactions showing a simplified version of the deuterium

exchange reactions occurring during the pyrolysis of 1,13-tetradecadiene in D20.
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Figure 3.43. Set of proposed reactions showing a simplified version of the deuterium

exchange reactions occurring during the pyrolysis of 1,13-tetradecadiene in D20

spiked on Guaymas Basin sediments.
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Figure 3.44. Set of proposed reactions showing a Simplified Version of the thermalbreakdown of LDPE Under hydrous pyrolysis COnditions.
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Figure 3.45. Proposed reaction pathway for the thermal alteration and deuterium

exchange processes occurring during the D20 pyrolysis of Messel shale.
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CHAPTER 4

Simulation of Thermally-Enhanced Diagenetic and Catagenetic

Transformations of Organic Matter in Surface Sediments from the

Southern Trough of Guaymas Basin
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ABSTRACT

In a preliminary study to simulate the hydrothermal petroleum generation

process, a series of hydrous pyrolysis experiments (24 hr at 200, 250, 300 and 350°C)

was conducted using a thermally unaltered sediment from Guaymas Basin, Gulf of

California. The volatile hydrocarbons and bitumen were analyzed to monitor the

changes in the compositions as a function of thermal stress. Some diagenetic and

catagenetic alterations of organic matter observed in near surface sediments of the

Guaymas Basin hydrothermal system have been duplicated by these short duration

hydrous pyrolysis experiments.

The production of typical thermogenic hydrocarbons was accompanied by the

production of an unusually large amount of volatile alkenes, with the proportion of

alkenes to alkanes decreasing with temperature. Significant n-alkane generation only

occurred in the 3500C experiment. A progressive change was observed in the Carbon

Preference Index (CPI) from 6.42 in the unaltered sediment to 1.4 in the 350°C

experiment. Diploptene (hop-22(29)-ene) was the major component of the triterpenoid

hydrocarbons of the unaltered sediment. In the 200°C experiment diploptene

disappeared and hop- 17(21)-ene became the major component of the triterpenoid series.

The 250°C and 300°C experiments resulted in an overall decrease of the triterpenes, but

there was the appearance of C27 to C32 hopanes (C28 missing) and the emergence of the

C32 benzohopane with a minor amount of C33 benzohopane. The benzohopanes were

not detected in the 350°C experiment, where the triterpenoid distribution was dominated

by ctl3-and 13ct-hopanes. The overall polycyclic aromatic hydrocarbon (PAH)

distribution was similar to a thermally immature sediment. Perylene dominated and its

concentration increased from 52 ng/mg bitumen in the unaltered sediment to 117 ng/mg

bitumen in the 300°C experiment. Significant destruction of perylene occurred in the

3500C experiment. Diels' hydrocarbon, a CI 8 compound in the short-alkyl-chain series

of triaromatic steroid hydrocarbons and a proposed indicator of rapid hydrothermal

petroleum generation processes, was generated during the 250°C and higher

experiments.

The biomarker transformations and PAH distributions in this series of

experiments are more representative of hydrothermally-enhanced diagenesis, indicating

that higher temperatures and/or longer heating durations are necessary to generate the

types of petroleum products found in the Guaymas Basin hydrothermal system.
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INTRODUCTION

The Guaymas Basin, Gulf of California is an actively spreading basin formed by

the diverging Pacific and North America plates. The rift zones in the basin are

distinguished from most spreading centers by having a thick sediment cover of

diatomaceous oozes and mud turbidites. Petroleum generation occurs primarily by dike

and sill intrusions into these sediments (Einsele et al., 1980; Lonsdale, 1985; Simoneit,

1983). 14C ages for selected petroleum samples range from 3200 to 6600 years B. P.

(Peter et al., 1991; Simoneit and Kvenvolden, 1993) indicating a significant amount of

contemporary organic detritus has been converted to petroleum. Hydrothermal

petroleums sourced from such recent sediments are characteristically enriched in polar

constituents with a high polycyclic aromatic hydrocarbon (PAH) content (Simoneit,

1984; Simoneit et al., 1992a; Kawka and Simoneit, 1990). The quick, high temperature

hydrothermal petroleum generation process is well suited for studying by laboratory

methods such as hydrous pyrolysis, a closed system pyrolysis technique where the

organic source material is kept submerged under water for the duration of the heating

experiment (Lewan et al., 1979). This procedure was adapted in an attempt to simulate

the hydrothermal petroleum generation process. The pyrolysates formed in the heating

experiments were analyzed and the results were compared to oils and naturally-altered

sediment extracts taken from the Guaymas Basin hydrothermal system.
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EXPERIMENTAL

Samples. Fig. 4.1 a is a map showing the Guaymas Basin trough system located

in the Gulf of California. Fig. 4.1 b is an enlargement of the Southern Trough of

Guaymas Basin. The surface sediment sample used in the experiments came from site

PC-1 of the Southern Trough of Guaymas Basin. Also shown is the location of the

comparison core, PC-6, an 8 meter piston core which sampled a hydrothermally altered

sediment (Simoneit et al., 1992b). The water depths at these locations are

approximately 2000 m.

Hydrous pyrolysis experiments. The piston core PC-1 sampled an area not

affected by hydrothermal activity. The surface sediment recovered with this core was

transferred to a Nalgene® bottle and immediately frozen. Prior to the heating

experiments the whole sediment was thawed, homogenized and split into 25g portions.

These fractions were placed in the freezer until needed for the hydrous pyrolysis

experiments.

A 250 mL T316 stainless steel pressure vessel ( Parr Instrument Co. ) with gage

block designed for hydrothermal studies to 600"C and 6000 psig (408 bar) was used in

the heating experiments. The reaction vessel and thawed sediment sample was placed in

a glove bag and flushed with five volumes of N2. The sediment was transferred to the

reaction vessel and water was added to result in a water to sediment ratio of 3 to 1. The

vessel was sealed and placed in a heater, temperature was controlled to + 30C. The

temperatures used for the experiments ranged from 150 ° to 350"C at 50°C intervals and

pressures from 290 to 2400 psig (20 to 163 bar). Each experiment lasted 24 hrs.

Extraction and fractionation. The reaction vessel was removed from the heater

and cooled to room temperature upon completion of the heating cycle. The volume of

gas generated from each heating experiment was measured and a sample was stored in a

gas tight vial until analysis by gas chromatography. The pyrolyzed sediments were

extracted with three 25 mL portions of methanol followed by five 50 mL portions of

methylene chloride. All the solvent extracts were combined with the water from the

pyrolysis experiment in a separatory funnel and the organic fraction collected. The

water was extracted with two additional portions of methylene chloride and the two

methylene chloride fractions were combined. The methylene chloride was dried with

anhydrous sodium sulfate and the solvent was removed using a rotary evaporator at

30°C. The total extract was made up to 2 mL of methylene chloride.
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The total extract (2 mL) was deasphalted using 100 mL of heptane. The

asphaltenes were allowed to precipitate overnight and removed by filtration. The

deasphalted fractions were fractionated on a column (30 cm x 1 cm) packed with 3.8 g

alumina (fully active) over 3.8 g silica gel (fully active). Each sample was separated

into three fractions by elution with 50 mL heptane (nonpolar, F1), 50 mL toluene

(aromatic, F2) and 25 mL methanol (polar, F3).

Gas chromatography. The gas chromatography (GC) of the volatile

hydrocarbons was performed with a Shimadzu GC-mini 3 equipped with a 1.8 m x

0.22 cm i.d. packed column (Poropak Q 50/80 mesh). The GC oven was heated using

the following program : initial temperature 40"C, programmed to 180°C at 10°C/min.,

and isothermal at 180°C for 16 min., with the injector and detector at 225°C, and helium

as the carrier gas. The GC of the sediment extracts was performed with a Hewlett

Packard 5890A equipped with a 30 m x 0.25 mm i.d. DB-5 open tubular column (0.25

pm film thickness). The GC oven was heated using the following program : isothermal

for 2 min. at 65°C, 4°/min. to 310°C, and isothermal for 30 min., with the injector at

290°C, detector at 3250C, and helium as the carrier gas.

Gas chromatography-mass spectrometry. The gas chromatography-mass

spectrometry (GC-MS) was performed on a Finnigan 9610 gas chromatograph coupled

to a Finnigan 4021 quadrupole mass spectrometer operated at 70 eV over the mass range

50-650 dalton and a cycly time of 2.0 s. The GC oven temperature was programmed at

isothermal for 2 min. at 65°C, 3°/min. to 310°C, and isothermal for 30 min., with the

injector at 290°C, and helium as the carrier gas. The MS data were processed with an

on-line Finnigan-Incos 2300 computer data system.
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RESULTS AND DISCUSSION

Volatile hydrocarbons. The gas chromatograms of the volatile hydrocarbons are

shown in Fig. 4.2, and quantitative data and selected ratios are shown in Table 4.1.

The production of typical thermogenic volatile hydrocarbons was confirmed by the low

values (< 50) of the C1/(C2 + C3) molar ratios (Bernard et al., 1976; Simoneit et al.,

1988). But the heating experiments also produced an unusually large amount of volatile

alkenes in addition to the standard distribution of thermogenic volatile alkanes.

Although the amounts of all the volatile hydrocarbons increased with increasing

temperature, the proportion of volatile alkenes to volatile alkanes decreased as

temperature increased. This is demonstrated by the steady drop in the ethylene to ethane

ratio (C2:1/C2) from 6.0 in the 200°C experiment to 0.3 in the 350°C experiment.

n-Alkanes. The gas chromatograms of the total extracts are shown in Fig. 4.3.

Large amounts of low molecular weight compounds were generated in the 200, 250 and

300°C experiments, but no significant n-alkane generation was observed. A major

change was observed in the 350"C experiment where the n-alkanes were some of the

most abundant components in the total extract. Fig. 4.4 shows the mass

fragmentograms (m/z 99) representing the n-alkane distribution. Heating of the recent

sediment resulted in the conversion of the n-alkane distribution from a terrestrial n--

alkane signature to one more representative of an oil. The carbon preference index

(CPI) progressively decreased from 6.4 in the unaltered sediment to 1.4 in the 3500C

experiment. The n-alkanes in the unaltered sediment ranged from Ci5 to C37 with a

carbon number maximum (Cmax)at C29, and a strong odd/even carbon number

predominance (>C23) characteristic of a significant terrestrial input (Brassell et al.,

1978). Little change was observed for the 200 and 250°C experiments. The 300°C

experiment resulted in a bimodal distribution ranging from Cl5 to C39 with a Cmax --

C29 and a minor maximum at C21. The 350°C experiment resulted in a more uniform n-

alkane distribution ranging from Cl3 to C33 maximizing at CI9.

Triterpenoid hydrocarbons. The distributions of the triterpenoid biomarkers are

shown in Fig. 4.5 with biomarker concentrations listed in Table 4.2. The triterpenoid

biomarker transformations can be characterized as thermally-enhanced diagenetic

reactions in the lower temperature experiments to early catagenetic reactions in the

350°C experiment. The triterpenoid distribution of the unaltered sediment was

characteristic of the Recent sediments from Guaymas Basin where hop-22(29)-ene

(diploptene) is the major component (Simoneit et al., 1979). But diploptene could not
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bedetectedin the extracts of the pyrolysis experiments. The loss of diploptene in the

200°C experiment was accompanied by a corresponding increase in hop-I 7(21)-erie

suggesting a near quantitative conversion of diploptene to hop- 17(21)-erie, which has

been proposed as a diagenetic transformation (Ensminger, 1977; Venkatesan, 1988a).

The distribution of the triterpenoid biomarkers in the 200, 250 and 300°C experiments

consisted of those compounds characteristic of diagenetic transformations. There was

an overall decrease in the triterpenes with the concomitant appearance of the C27 to C32

1713(H),2113(H)-hopanes (C28 missing) and emergence of the C32 and C33

benzohopanes. The 171_(H),2 la(H)-hopanes and 17ct(H),21 [3(H)-hopanes were formed

in the 300 and 350°C experiments. The C-22 S/(S+R) epimer ratio of 17ct(H),21 [3(H)-

homohopane of 0.12 in the 300"C experiment and 0.32 in the 350°C experiment

indicated a minimum of thermal stress, i.e., incomplete maturation. The benzohopanes

were not detected in the 350°C experiment.

Polycyclic Aromatic Hydrocarbons. The concentrations of the major polycyclic

aromatic hydrocarbons (PAH) are shown in Fig. 4.6. The major PAH in the unaltered

sediment was perylene. The compound perylene, which is primarily diagenetic in origin

(Louda and Baker, 1984; Venkatesan, 1988b), increased in concentration in the 200,

250 and 300°C experiments suggesting an additional production of perylene by heating.

Low levels of pyrolytic PAH common in oils and sediment extracts of Guaymas Basin

were also generated. The 3500C experiment resulted in the destruction of perylene with

the further increase in the pyrolytic PAH. A comparison of these PAH distributions to

Guaymas Basin oils and sediment extracts previously analyzed reveals that the 200 to

300°C experiments generated PAH which are very similar to thermally immature

sediments, but the 3500C experiment resulted in a distribution more characteristic to

sediments that have been altered by dolerite sill intrusions (Kawka, 1990; Kawka and

Simoneit, 1990).

Diels' hydrocarbon. Fig. 4.7 are the mass fragmentograms of m/z 217 and m/z

231 showing the relative distributions of two series of triaromatic steroid hydrocarbons

in the unaltered sediment and the heating experiments. Diels' hydrocarbon, a triaromatic

steroid hydrocarbon common in Guaymas Basin petroleum and a proposed tracer of

hydrothermally derived oils, was generated in the 250°C and higher temperature

experiments. Fig. 4.7 shows the generation of Diels' hydrocarbon and the concomitant

loss of the other long-chain steroid hydrocarbons, indicating that a possible

transformation to Diels ° hydrocarbon is occurring from these compounds. The

concentration of Diels' hydrocarbon is shown in Fig. 4.6 relative to the polycyclic
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aromatichydrocarbons,showingthatthis triaromaticsteroidhydrocarboniscomparable

in concentrationto theotherPAHgeneratedin theheatingexperiments.

Ketones. A survey of oils from the Guaymas Basin has revealed several

homologous series of alkanones that are ubiquitous in the polar NSO fractions. The

alkan-2-ones are usually in highest concentration, followed by 3-, 4-, 5- (and higher)

isomers. An examination of the NSO fractions from these heating experiments detected

the alkanones only in the 3500C experiment. Their pyrolytic origin was verified by the

smooth homolog distribution, but the ketones were primarily the n-alkan-2-one isomers.

The ketone mass fragmentogram is shown in Fig. 4.8.

These preliminary hydrous pyrolysis experiments resulted in a variety of

thermally-enhanced diagenetic reactions and early catagenetic reactions. The time /

temperature relationships were such that catagenetic reactions leading to hydrothermal

petroleum were minimal in the 200, 250 and 300"C experiments but enhanced in the

350"C experiment. The major chemical processes with the aliphatic components

observed in the heating experiments, cracking and isomerization, can be explained by a

combination of radical and ionic mechanisms.

The volatile hydrocarbons generated in the heating experiments had a high

proportion of alkenes, but the degree of unsaturation decreased with increasing reaction

temperature. Volatile alkenes, especially ethylene, are common products formed from

the thermal cleavage of aliphatic hydrocarbons by a radical cracking mechanism

(Tsuchiya and Sumi, 1968). But alkenes are not present in the high temperature vent

fluids of the Guaymas Basin (Simoneit, 1983b; Simoneit et al., 1988), although low

levels of alkenes of biological origin have been detected in the interstitial gases of

Guaymas Basin sediments (Whelan and Hunt, 1982). The large amount of volatile

alkenes generated in the heating experiments is interpreted as primary cracking products

that have not undergone hydrogenation. Instead they have partitioned into the

headspace of the bomb and away from the catalytic surfaces which facilitate double

bond reduction. Under these operating conditions, the headspace of the reaction vessel

appears to affect the rates of these secondary hydrogenation reactions. A large excess of

water along with the presence of a gas headspace in the reaction vessel may decrease

those reaction rates that are influenced by mineral surface chemical reactions.

Another type of reactions likely to be affected by the partitioning away from the

minerals and into the gas or liquid phases would be isomerization reactions, where the

rates of these reactions have been found to be greatly influenced by the type of minerals

present (Huizinga et al., 1987a,b; Kissin, 1987, 1990; Lu et al., 1989; Peters et al.,
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1990). This mayexplain why decreasedcatalytic activity is observedwhenorganic-

mineralpyrolysisexperimentsareperformedwith anexcessof water(Hendersonet al.,

1968;EismaandJurg, 1969;Huizingaet al., 1987a,b). Monthioux andco-workers

(1985)havesuggestedthatthemostnaturalcatageneticconditionsarebettersimulatedin

the laboratoryby usingclosed-systemexperimentswith a reducedfreevolume,anda

minimumof anydilutinggas.

Very little changein then-alkane distribution occurred in the 200°C and 250°C

experiments. But greater n-alkane formation from the C16 to C27 range commenced in

the 300°C experiment, with a large amount of n-alkane generation in the 350°C

experiment. Alkenes were not found in the bitumen from these heating experiments,

suggesting that the hydrogenation reactions have occurred to sufficiently reduce the

alkenes of the cracking products.

The changes observed in the hopanoid biomarkers ranged from the diagenetic

diploptene to hop-17(21)-ene conversion, most likely occurring by an acid catalyzed

isomerization, to early catagenesis (e.g. epimerization of the C31otl3 hopane). The

biomarker changes observed in these heating experiments parallel the biomarker

transformations observed in the lower sections of core PC-6 (Fig. 4.9), an eight meter

long piston core which sampled a hydrothermally altered sediment column in the vicinity

of active hydrothermal mounds of the Southern Trough of Guaymas Basin (Simoneit et

al., 1992b).

The total extracts in the 200, 250 and 3000C experiments contained a large

amount of low molecular weight polar compounds. This may be due to the fact that the

pyrolysis bomb, being a closed system, cannot duplicate some of the natural

hydrothermal processes such as solubilization and porewater transport or water-washing

which likely affect the relative proportions of the aliphatic, aromatic and polar NSO

compounds. Therefore certain constituents which may normally be transported away by

porewater fluid migration are retained in the total extract.
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CONCLUSIONS

The results obtained in these heating experiments show that the hydrous

pyrolysis experiments can alter the surficial sediments similarly to some of the near

surface reactions occurring naturally in Guaymas Basin. These reactions are a

combination of radical and ionic mechanisms. It is likely that under these hydrous

pyrolysis conditions, the primary pathway of releasing aliphatic components from the

kerogen is by radical cracking. But secondary reactions, such as isomerizations and

epimerizations, are most likely ionic reactions. Secondary radical reactions, such as

double bond hydrogenation, are likely surface mediated and therefore may become

diffusion controlled in large reactions vessels. Care should be taken when extrapolating

the results of heating experiments performed in batch reactors with large amounts of

excess water and large headspaces. Organic components typically remain in contact

with mineral surfaces during natural sedimentary hydrothermal alteration. But in this

experimental design, the pyrolysates can quickly be partitioned away from the mineral

surfaces and remain in the gas and liquid phases.

This study simulated some of the reactions which occur during the earliest stages

of hydrothermal petroleum generation. The overall process of hydrothermal petroleum

generation likely occurs over a wide temperature range (warm to > 350"C).
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Table 4.1. Analytical results of volatile hydrocarbonanalysesfor 24 hr heating

experiments.

Temp. GasYield CI C2:1 C2 C3:1 C3 (21__ C2:1

(*C) mL@STP (ppm) (ppm) (ppm) (ppm) (ppm) (C2+C3) C2

200 39 450 108 18 77 n.d.a 25.0b 6.0

250 67 1180 426 112 380 n.d.a 10.5b 3.8

300 80 5760 1030 1060 1310 695 3.3 0.9

350 126 37750 1965 5720 2700 2925 4.4 0.3

a not determined due to poor resolution

b this ratio represents a maximum value due to lack of C3 data
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Table 4.2. Triterpenoid concentrations from the 24 hr heating experiments (ng/g sed.)

Compound Unaltered 200°C 250°C 3000C 350°C

Ts - - 165

Tm 23 26 13 33 39

C29al3 - - 68 189

Hop- 17(21)-ene 43 467 74 43 -

C2913a 10 53 127

C30otl_ - - 39 112

Neohop- 13(18)-ene 36 66 10

C291313 43 16 23 -

C3O1_ - 18 67 164

C31ctl3(S) - 4 32

C31a[3(R) - 29 66

C30_ 37 95 55 87 -

C31[]_t - 27 68

Hop-22(29)-ene 480 - - -

C32ctl3(S) - - 12

C32et13(R) - - 13 29

C321k_ - - 12 40

C3113_ 50 83 40 47

C321313 - 11 7 16

C32 Benzohopane - 42 88 78

C33 Benzohopane - 5 14
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300°C; e) 24 hr @ 350°C. Concentrations of Diels' hydrocarbon relative to polycyclic

aromatic hydrocarbons are shown in Fig. 4.6.
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Figure 4.9. Mass fragmentograms m/z 191 representative of triterpenoid hydrocarbons:

a) PC-l, 24 hr @ 200°C; b) PC-6, 392-397 cm below sea floor; c) PC-l, 24 hr @

350"C; d) PC-6, 793-795 cm below sea floor. Distributions for heating experiments

and PC-6 showing parallel transformations in the heating experiments and the naturally

altered sediment.
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CHAPTER 5

Simulation of Hydrothermai Catagenetic Transformations of Organic Matter in

Surface and Downcore Sediments from the Northern Trough of Guaymas Basin
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ABSTRACT

A series of pyrolysis experiments, using one surface sediment and two

downcore sediments from the Northern Trough of Guaymas Basin, Gulf of California,

was conducted to study the effects of time during the laboratory simulated

hydrothermal catagenetic alteration of sedimentary organic matter. These experiments

were conducted using a modified pyrolysis technique which eliminates the headspace

and excess water inside the reaction vessel. Each sediment was pyrolyzed at 330"C

for 24, 48 and 72 hr. The extent of alteration was measured by monitoring the n-

alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic

hydrocarbons, ketones and isoprenoid phenols. The experimental results were

compared to sediment extracts which have been naturally altered by sill intrusion and

accompanied hydrothermal fluid flow.

Smooth n-alkane patterns were generated with all sediments after 24 hr and

full hopane and sterane maturation in 48 hr. The mature hopane ratios were altered by

unequal destruction of the hopanes. The polycyclic aromatic hydrocarbons were

progressively converted from a perylene- to phenanthrene-dominated pattern in the

deepest sediment, and Diels' hydrocarbon was major in the upper and surface

sediments. Ketones were present in the NSO fractions of all experiments.

The experimental pyrolysis experiments duplicate the natural hydrothermal

alteration which has occurred by dolerite sill intrusions in the Guaymas Basin

sediments. The results indicate that the extent of steroid diagenesis may be the most

important factor in the formation of Diels' hydrocarbon. These experiments support

the hypothesis that aliphatic ketones are common products under pyrolytic conditions.
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INTRODUCTION

The production of petroleum hydrocarbons under marine hydrothermal

conditions is a well documented process (Simoneit, 1988, 1990 and references within).

The sedimentary organic matter associated with the Guaymas Basin hydrothermal

system is pyrolyzed by the high thermal gradient of a heat source at depth and by dike

and sill intrusions into the unconsolidated sediments. On Leg 64 of the DSDP drilling

program, sediments from the Guaymas Basin rift system were sampled and several

sills were identified which have been emplaced at different depths below the sea floor.

The characteristics of these hydrothermally generated oils associated with the

intrusions depends on the heating duration, heating temperature and nature of the

source organic matter. The depths at which these sills were emplaced generated oils

from sedimentary organic matter that had undergone different extents of diagenesis.

A set of seabed oils has been analyzed by radiochemical dating procedures and

indicated that these oils have been generated from a carbon pool that is approximately

5000 years old (Peter et al., 1991). This was a broad, random selection of oils

associated with the hydrothermal vents. This data indicates that most of the

hydrothermal oils presently emanating from the vents are derived from relatively

shallow marine sediments. The present study was a simulation of this hydrothermal

generation process by laboratory pyrolyses of whole sediments from different depth

horizons, and a comparison was made with the results of sediments that have been

altered by a massive sill intrusion. The objective was to determine how sedimentary

organic matter from different depth horizons affected the quality of the generated oils.

Experimental data on catagenetic conversions of sedimentary organic matter

and petroleum source rocks have been obtained from a variety of high temperature

experiments employing different experimental designs. These experiments have been

performed in open or closed systems, different times, temperatures, dry or wet

conditions, using diverse starting materials, sometimes with associated or added

minerals. The experiments have demonstrated how time, temperature, minerals and

pressure influence the organic matter conversions under the particular experimental

conditions (Horsfield, 1984 and references within).

The presence of water is generally regarded as an important component of

pyrolysis simulations, although ever since Lewan and co-workers (1979) used water in

their experiments and named the procedure hydrous pyrolysis, the actual role of water

has been a point of controversy, especially when oil-like pyrolysates have been formed
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underanhydrousconditions(Cometet al., 1986). But it hasbeenshownthat under

aqueousconditions, thesepyrolysatesresemblenatural oils (Eglinton et al., 1986;

Eglintonand Douglas,1988;Lewan, 1983;Lewanet al., 1986). Wateralso hasthe

important ability of facilitating the ionic mineral reactions which are primarily

responsiblefor fixing the Eh and pH of a system(Eugster, 1986; Shock, 1990).

Thereforethepresenceof waterappearsto beessentialwhensimulationof thenatural
environmentisdesired.

In conventionalhydrouspyrolysis experiments,manygramsof rock chips or

sedimentaresubmergedunderwater sotheexpelledoil from thesamplewill float to

thetop of thewater (Fig. 5.1). Onceexpelled,theoil is no longer in contactwith the

minerals. However,in thenaturalenvironmenttheorganicmatterremainsin intimate

contactwith themineral assemblageandcanundergoa largenumberof geochemical

processesin associationwith the mi,-aeralsurfaces(Alexanderet al., 1982;Goldstein,

1983;Johns,1979). Theresultingpyrolysatesaresimilar to matureoils in manyways

but biomarkersarecommonlyenrichedin thelessmatureisomers.An explanationfor
thisobservationis a strongeracid thanwatermaybeneededfor the isomerizationof

biomarkers,or anysaturatedchiral carbonin general(Larcheret al., 1986;Sieskind,

1979). This is wherethecatalyticeffectsof mineralsurfacesareimportantprocesses.
Numerous studies have shown that the mineral interactions exert considerable

influenceon thequality andquantityof organicmatterevolution(EvansandFelbeck,
1983;Horsfield andDouglas,1980;Huizingaet al., 1987a,b;Larcheret al., 1988;Lu

et al., 1989; Peters et al., 1990; Spiro, 1984; Tannenbaumand Kaplan, 1985;
Tannenbaumet al., 1986a,b).

Theeffectsof themineral/organicreactionswill influencetherateof bitumen

generationand biomarkerconversion,but onceremovedfrom the mineral matrix,

thesereactionratescanchange. The timing of theoil expellingprocessis unknown

andthereforeexperimentalresultsusingtheconventionalhydrouspyrolysis technique

may be misleading. But if the pyrolysate is confined with the minerals for the

durationof theheatingexperiments,a morerealisticsetof resultswould beexpected.

The method of aqueous confinement pyrolysis was employed to more

realisticallysimulatetheconditionsfound in thenaturalsystem(Fig. 5.2). This was

doneby confining the organiccompoundsto the inorganicmatrix during the entire

durationof the experiment. To avoid the potentialproblemof bitumen partitioning

awayform theinorganicsedimentmatrix,theseexperimentsweredoneunderhydrous

butalsoin aconfinedpyrolysissystem,Theconfinedpyrolysissystemeliminatedthe
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largeheadspacefrom thereactorandalsoeliminatedthelargeexcessof water,thereby

confining the organic pyrolysatesto the bulk inorganic matrix. This principle is

adaptedafter the confined-systempyrolysis and compaction pyrolysis methods

recently usedto study hydrocarbongeneration(Monthioux et al., 1985; Blanc and

Connan,1992;Takedaet al., 1990). High pressuremini-reactorswereadaptedfor this

process. By combining the advancesin our understandingof the actual organic

chemicalreactionswhich occuron mineral surfaces(Kissin, 1987;Lao et al., 1989;

Regtopet al., 1985;Smithet al., 1989;Solomon,1968;Wereset al., 1988;Wilson et

al., 1986)andunderhigh temperatureaqueousconditions(Breslow, 1991;Blouri et

al., 1981;Depeyreand Flicoteaux, 1991;Siskin and Katritzky, 1991and references

therein), a more realistic experimentalprocedurefor hydrothermalsimulationswas

developed.
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EXPERIMENTAL

Samples. The samples used in the pyrolysis experiments were the following:

All-112-29 PC-5, a surface sediment obtained from the Northern Trough of Guaymas

Basin in 1985; DSDP 481A-8-7 (top of pipe); and DSDP 481A-22-7 (top of pipe).

The locations of the samples in the sediment column are shown in Fig. 5.3. The

downcore samples were selected from sediments above and below a major sill

intrusion that have not been thermally altered by the intrusion.

Hydrous pyrolysis experiments. Pyrolysis experiments were performed in

Sno-Trik ® T316 stainless steel high pressure pipes rated at 60,000 psi, sealed with end

caps and heated in an air circulating oven where the temperature was set at 330* +2*C.

The reaction vessels and sediment samples were placed in a glove bag and flushed

with five bag volumes of Ar. For each experiment 0.85g of dried sediment was

combined with 0.250 mL of ultrapure water. Each sediment sample was homogenized

and separated into three subsamples. Each sample was pyrolyzed for 24, 48 and 72

hrs.

Extraction and fractionation. The reaction vessels were removed from the

oven and cooled to room temperature upon completion of the heating experiments.

The reaction vessels were extracted with two 1 mL portions of methanol followed by

five 1 mL portions of methylene chloride. The solvents and water from each pyrolysis

experiment were combined in a centrifuge tube and the organic fraction separated and

collected. The water was extracted with two additional portions of methylene chloride

and the two methylene chloride fractions were combined. The methylene chloride was

dried with anhydrous sodium sulfate and passed through an activated copper column

to remove the elemental sulfur. The solvent was removed using a rotary evaporator at

30°C. The total extract was redissolved in 2 mL of methylene chloride and

deasphalted with 100 mL of heptane. The asphaltenes were allowed to precipitate

overnight and removed by filtration. The deasphalted fractions were concentrated to 2

mL and fractionated by column chromatography (30 cm x 1 cm) packed with 3.8 g

alumina (fully active) over 3.8 g silica gel (fully active). The samples were separated

into three fractions by elution with 50 mL heptane (nonpolar, F1), 50 mL toluene

(aromatic, F2) and 25 mL methanol (polar, F3).

Gas chromatography. Gas chromatography (GC) of the pyrolysate fractions

was performed with a Hewlett Packard 5890A equipped with a 30 m x 0.25 mm i.d.

DB-5 open tubular column (0.25 jxrn film thickness). The GC oven was heated using
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the following program : isothermal for 2 min. at 65°C, 4°/min. to 310°C, and

isothermal for 30 min., with the injector at 290°C, detector at 325°C, and helium as the

carrier gas.

Gas chromatography-mass spectrometry. The gas chromatography-mass

spectrometry (GC-MS) was performed on a Finnigan 9610 gas chromatograph

coupled to a Finnigan 4021 quadrupole mass spectrometer operated at 70 eV over the

mass range 50-650 dalton and a cycle time of 2.0 s. The GC oven temperature was

programmed at isothermal for 2 min. at 65°C, 3°/min. to 310°C, and isothermal for 30

min., with the injector at 290°C, and helium as the carrier gas. The MS data were

processed with an on-line Finnigan-Incos 2300 computer data system.
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RESULTS AND DISCUSSION

The gas chromatograms of the aliphatic, aromatic and NSO fractions for all of

the unaltered and pyrolyzed sediment extracts are presented in Appendix 4. With the

exception of the 48 hr pyrolysis of sample 481 A-22-7 (top), which developed a leak

during the experiment, all of the confined system pyrolysis experiments maintained a

pressure tight seal. The molecular ratios of the 48 hr pyrolysis of 481 A-22-7 (top)

were calculated and are presented in the results section, although quantitatively there

was a significant drop in the bitumen yield.

AII-112-29 PC-5. Results for the aliphatic fractions are summarized in Table

5. I. The unheated surface sediment from the Northern Trough of Guaymas Basin was

characteristic of other surface sediments from that region (Simoneit et al., 1979). For

example, the n-alkanes have a Carbon Preference Index (CPI) of 5.8, and the major

triterpenoid was diploptene. All of the heating experiments of this sediment generated

bitumen with n-alkane distributions typical of oils from the Guaymas Basin. The CPI

was 1 for all three heating durations; Cmax was 15 tO 17; and the Pr/Ph ranged from 1

to 1.1. There was a progressive increase in the amount of n-alkanes relative to

pristane and phytane as a function of time. Pristane and phytane were the major

compounds in the 24 hr experiment but were secondary in the 72 hr experiment.

The distributions of the triterpenoid hydrocarbons for the unaltered and heating

experiments for the surface sediment are shown in Fig. 5.4. The triterpane distribution

of the 24 hr experiment ranges from C27 to C35 (C28 missing) and consists primarily

of the 17a(H),211_(H)-hopanes and a lesser amount of the 171_(H),21a(H)-hopanes

(moretanes). The C-22 S to R epimer ratio of the 17_t(H),2113(H)-31-homohopane is

22S/(22S + 22R) = 0.42, not equivalent to the maturity of a typical crude oil

(equilibrium ratio = 0.60, Ensminger et al., 1974, 1977), but it is typical for some

hydrothermal oils previously reported (Kawka and Simoneit, 1987). The S/(S + R)

stays relatively constant for the 48 hr and 72 hr experiments, but the longer duration

heating experiments resulted in a large amount of destruction of the biomarkers. Plots

of the relative abundances of some triterpenoid hydrocarbons are shown in Figure 5.5.

The relative amounts of the triterpenoid biomarkers indicate that the triterpenoid

molecular ratios are probably affected more by preferential destruction rather than

interconversion from one epimer to another.

Fragmentograms of the steroid hydrocarbons are presented in Fig. 5.6. The

unaltered sample is dominated by sterenes and all three heating experiments are
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dominatedby C27to C29 steranes, primarily the 5et(H),14a(H),17ot(H)-20R isomers,

with lower amounts of the 513(H),14a(H),17a(H)-20R isomers. There was little

change in the sterane distribution as a function of heating time.

The aromatic fraction of the unaltered sample was dominated by perylene,

primarily derived by diagenesis (Louda and Baker, 1984), but the distributions of the

major resolved aromatic compounds were dominated by Diels' hydrocarbon (1,2-(3'-

methylcyclopenteno)phenanthrene, DHC-2), with a lesser amount of a C!8 isomer

(DHC-1), in the heating experiments (Fig. 5.7). Diels' hydrocarbon, common in

Guaymas Basin oils, has been used as an indicator of the rapid hydrothermal

petroleum generation processes (Kawka, 1990; Simoneit et al., 1992). The rest of the

aromatic compounds present in these fractions are primarily low molecular weight

PAH and alkyl-PAH (i.e. phenanthrene and methyl-, dimethyl- and

trimethylphenanthrenes).

Several homologous series of ketones, ranging from C14 to > C33, were present

in all of the heating experiments. They were some of the major components in the

NSO fractions, with alkan-2-ones being the highest in concentrations, with lesser

amounts of the 3-, 4- 5- (and higher) homologs. The isoprenoid phenols were also

generated in the heating experiments, although they were minor components.

481 A-8-7 (top pf pipe). The results of the aliphatic fraction are presented in

Table 5.2. All of the heating experiments of this downcore sediment generated

bitumen with n-alkane distributions typical of oils from the Guaymas Basin. As with

the surface sediment, there was a progressive increase in the n-alkanes relative to the

isoprenoid hydrocarbons pristane and phytane with respect to heating duration. The

aliphatic fraction of the 48 hr experiment was characterized by the appearance of a

large hump or unresolved complex mixture (UCM) in the n-C25 to n-C35 range.

The mass fragmentograms characteristic of the triterpenoid hydrocarbons for

the unaltered and heating experiments are shown in Fig. 5.8. The triterpane

distribution of the 24 hr experiment was similar to that of the surface sediment

pyrolysis where the hopanes ranged from C27 to C35 (C28 missing) and consisted

primarily of the 17et(H),2113(H)-hopanes and a lesser amount of the 1713(H),2 let(H)-

hopanes (moretanes). The C-22 S to R epimer ratio of the 17a(H),2113(H)-31-

homohopane is 22S/(22S + 22R) = 0.46, not equivalent to the maturity of a typical

crude oils, but the S/(S + R) -- 0.59 in the 48 hr experiment, indicating that the epimers

are in their equilibrium ratios. The 48 hr experiment resulted in a large increase in the

amount of biomarkers relative to the 24 hr experiment (Fig. 5.9), corresponding to the
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formation of the large UCM in the aliphatic fraction. There was significant
destruction of the biomarkersin the 72 hr experiment. The reversal in the C31-

homohopane S/(S + R) ratio in the 72 hr experiment is the result of hopane

destruction.

Fragmentograms of the steroid hydrocarbons are presented in Fig. 5.10. The

unaltered sample is dominated by C27 to C29 sterenes. The 24 hr experiment consists

of C27 to C29 steranes, primarily the 5et(H),14a(H),17et(H)-20R isomers, with lower

amounts of the 513(H),14a(H),l 7a(H)-20R isomers. Extensive isomerization of the

steranes occurred in the 48 hr experiment resulting in a pattern representative of a

fully mature oil. Destruction of the steranes occurred in the 72 hr experiment, a loss

of sterane hydrocarbons analogous to the destruction of the triterpanes. The remaining

steranes were primarily the 5a(H),l 4a(H),l 7et(H)-20R isomers, with lower amounts of

the 513(H), 14a(H), 17et(H)-20R isomers.

A summary of the PAH quantitation is shown in Fig. 5.11. The aromatic

fraction of the unaltered sample was dominated by perylene, and there was a trend of

perylene destruction accompanied by pyrolytic PAH formation as a function of time in

the heating experiments. Diels ° hydrocarbon was also formed in relatively high

amounts, but in lower amounts compared to the concentrations obtained by the

pyrolyses of the surface sediment PC-5. The pyrolyses of this sediment formed Diels'

hydrocarbon in concentrations approximately 30% of the surface sediment pyrolyses.

The multiple homologous series of ketones were all present in the heating

experiments and were well resolved and in high amounts in the NSO fractions. As

with the pyrolysis of the surface sediment, the alkan-2-ones were in highest

concentrations, with lesser amounts of the 3-, 4- 5- (and higher) homologs. The

isoprenoid phenols were also generated in the heating experiments, although they were

minor components.

481 A-22-7 (top of pipe). The results of the aliphatic fraction are presented in

Table 5.3. All of the heating experiments of this sediment generated bitumen with n-

alkane distributions typical of those found in oils of Guaymas Basin. The relative

amounts of n-alkanes to pristane and phytane were much higher in these experiments

than in the previous experiments. The 48 hr experiment developed a leak some time

during the experiment, which resulted in an overall decrease in extactable organic

matter.

The mass fragmentograms characteristic of the triterpenoid hydrocarbons for

the unaltered and heating experiments are shown in Fig. 5.12. The triterpane
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distribution of theunalteredsedimentconsistedof hop-17(21)-eneandtheC29 to C31

1313-hopanes. The pyrolysis experiments formed hopanes ranging from C27 to C35 (C28

missing) in their fully mature configurations, the C-22 S to R epimer ratio of the

17a(H),2113(H)-31-homohopane is 22S/(22S + 22R) = 0.59 in the 48 hr experiment

and 0.58 in the 72 hr experiment. Fig. 5.13 shows the relative amounts of the selected

hopane biomarkers. The minimum values of the 48 hr experiment correspond to the

pressure vessel that leaked during the experiment.

The sterane plots are shown in Fig. 5.14. Conversion from the sterene pattem

of the unaltered to the oil-like pattern occurred in only 24 hr, indicating that the

extensive isomerization to the fully mature signature is rapid. This pattern remained

unchanged for the 48 and 72 hr experiments.

The histograms from the PAH quantitation are shown in Fig. 5.15. The

aromatic fraction of the unaltered sample was dominated by perylene, and there was a

large amount of perylene destruction accompanied by pyrolytic PAH formation as a

function of time in the heating experiments. Diels' hydrocarbon was formed in only

trace levels in the 24 and 72 hr experiments.

The homologous series of ketones were the major compounds of the NSO

fractions of the 24 and 72 hr experiments, with only trace amounts in the 48 hr

experiment. The low amount of ketones in the 48 hr experiment is likely an artifact

due to the leak in the reaction vessel. The isoprenoid phenols were not formed in any

of the heating experiments of sediment 481 A-22-7 (top).

The results clearly show that there are significant catagenetic changes as a

result of the heating experiments, demonstrating that under these experimental

conditions pyrolysates very similar to hydrothermal oils can be generated by

confinement pyrolysis.

Effects of time on the pyrolysates. Increasing the duration of the experiments

from 24 to 72 hr resulted in the general trend of increasing the amount of n-alkanes

relative to the isoprenoids pristane and phytane. Isoprenoids can be derived from

several sources such as the phytyl side chain of chlorophyll (Cox et al., 1970; Maxwell

et al., 1972), from tocopherols (Goosens et al., 1984), as well as from ether lipids from

Archaebacteria (Michaelis and Albright, 1979). It is possible that these isoprenoids

are released from the kerogen earlier than the n-alkanes due to slightly weaker

chemical bonds linking the isoprenoids to the bound matrix.

The triterpenoid biomarker distribution in the pyrolysis of the surface sediment

AII-112-29 PC-5 is probably the result of the simultaneous generation, isomerization
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anddestructionof thecompoundsin this series.The distribution after 24hr closely

resemblesthatof anoil, althoughtheC31-homohopaneS/(S+ R) ratiodid not indicate

full maturation. The 48 and72 hr experimentsappearto bepost-mature,due to the
destructionof thebiomarkers.

A similar trendwasobservedin the 481A-8-7 (top) sediment,but this sample

reachedfull maturationafter 48hr, both in thehopaneandsteranebiomarkers. The

reversal in the C31-homohopaneS/(S + R) ratio after 72 hr was a result of a

preferential lossof the R isomerfrom the extensiveloss of the biomarkersdue to
thermaldestruction.

Sample481A-22-7 (top) also reached full maturation in both the steranes and

hopanes after 48 hr and maintained these biomarker distributions through to the 72 hr

experiment. Considering that the 48 hr experiment leaked, a comparison of the 24 hr

to the 72 hr experiment suggests little change, or even a sligbt increase in the amount

of hopanes for the 72 hr duration.

Using the hopane and sterane biomarkers as a measure, the "oil window" was

reached within 72 hr of heating for all three sediments. This demonstrates that

maturation of the sedimentary organic matter accompanied by full hopane and sterane

isomerization can be achieved from recent, thermally-unaltered sedimentary organic

matter. These biomarker conversions match closely those changes observed in

sediments from DSDP Site 481A, where the sedimentary organic matter in the

proximity of a dolerite sill was thermally altered and resulted in maturation of the

biomarker signatures (see Ch. 2, Figs. 2.17 and 2.18).

The PAH distributions reflect the destruction of perylene coupled with the

generation of lower molecular weight aromatic compounds. This trend was also seen

in the sediments that were naturally altered in DSDP Site 481A (see Ch 2. Fig. 2.19).

The experimental set that most closely matched the natural trend was the 481A-22-7

(top) sediment. But in the experiments a large amount of anthracene was also formed,

a PAH which is commonly found in hydrothermal oils (Kawka and Simoneit, 1990).

Anthracene was in very low concentrations or not detected in the naturally altered

sediments of Site 481A.

Effects of depth on the pyrolysates. The most striking trend observed as a

function of sediment depth was in the polycyclic aromatic hydrocarbons. Both the

surface sediment and sample 481A-8-7 (top), a sample from the hydrothermally

unaltered sediments above the sill, generated a large amount of Diels' hydrocarbon,

but this compound was present in only trace amounts in the pyrolysates of 481 A-22-7
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(top). This compoundhasbeenproposedasa tracerof high temperaturealterationof

sedimentaryorganic matter, but its absencesuggeststhat the formation of Diels'

hydrocarbonis morethanjust temperaturedependent,that its formationis a function

of the natureof the organicmatter. A plot showing the relative amounts of Diels'

hydrocarbon as a function of temperature for the three samples is shown in Fig. 5.16.

Diels' hydrocarbon is thought to be primarily derived from functionalized steroid

compounds in the sediments, and under hydrothermal conditions the steroid is rapidly

dehydrogenated to the triaromatic steroid hydrocarbon. The results indicate that the

extent of diagenesis affects the yield of Diels' hydrocarbon. It is possible that as

diagenesis progresses, the functionalized steroid natural products slowly become

defunctionalized and reduced to saturated sterane hydrocarbons. Hydrothermal

alteration of saturated steranes favors epimerization and destruction reactions rather

than aromatization reactions. This would explain the lack of Diels' hydrocarbon in the

pyrolysis of the deepest sediments. The present seabed oils, which contain high

amounts of Diels' hydrocarbon (Kawka, 1990), are likely derived from sedimentary

organic matter that has not undergone extensive diagenesis, in agreement with the

young 14C ages of the oils (Peter et al., 1991).

The series of ketones present in all of the pyrolysates have also been found in

hydrothermal oils, extracts of hydrothermally-altered sediments, and simulated

pyrolysis experiments. The ubiquitous presence of these compounds in the bitumen

and oils of high temperature origin (Leif et al., 1992; George and Jardine, 1993)

suggests that these compounds may be good indicators of high temperature

hydrothermal alterations of organic matter. The isoprenoid phenols, previously

identified as common constituents in the NSO fractions of hydrothermal oils, were

generated in all of the heating experiments. Their concentrations were low, but the

distributions of these compounds in the heating experiments matched those in the

seabed oils.

The procedure of confinement pyrolysis was successful in converting the

recent, immature sedimentary organic matter to products resembling mature oils or

sedimentary organic matter that has been extensively altered by high temperature

hydrothermal activity. Parallel experiments using the conventional hydrous pyrolysis

tec.hnique were not performed. Therefore, it cannot be concluded that these

conversions would have occurred at different rates under hydrous pyrolysis

conditions. Although, numerous experiments have been carried out on Guaymas
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Basin sedimentsusingconventionalhydrouspyrolysisconditionsundersimilar time
andtemperatureconditions,full biomarkerisomerizationwasneverobserved.

CONCLUSIONS

The procedureof confinementpyrolysis hasbeenperformed using whole,

unconsolidated sediments from the Guaymas Basin hydrothermal system. Thermal

alteration of immature sedimentary organic matter to a fully mature extractable

bitumen has been achieved using three different sediments from the Guaymas Basin

hydrothermal system, with full maturation occurring after 48 hr. Comparison of the

major compounds in the aliphatic, aromatic and NSO fractions generated in the

heating experiments with those in naturally-altered sediment sequences indicates a

reasonable match in the quality and quantity of those components.

Application of these experimental results to oil generation in the Guaymas

Basin indicates that diagenesis may play an important role in altering the nature of the

source organic matter, especially the steroids and their derivatives. The aliphatic

ketones appear to be good universal indicators for high temperature catagenetic

processes.
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Table 5.1. Selected parameters for the aliphatic fractions of AII-112-29 PC-5.

All- 112-29 PC5

Parameter Unaltered 24 hr @ 330"C 48 hr @ 330"C 72 hr @ 330"C

n-alkane

range

CPI

Cmax

Pr/Ph

Pr/n-C17

Ph/n-C 18

SI(S+R)
C31

S/(S+R)

C32

29,30,31H
29,30,31M

27R/29R

27R/28R

28R/29R

15-35 12-39 12-39 11-39

5.8 1.0 1.0 1.0

31 17 15 15

n.d. 1 1.06 1.12

n.d. 1.16 0.98 0.81

n.d. 1.33 1.04 0.87

- 0.42 0.37 0.45

0.46 0.38 0.44

2.48 1.75 2.03

1.96 2.40 3.60

2.48 2.48 4.50

0.79 0.97 0.80

n.d. = not determined

S/(S.+R) = C-22 S and R epimer ratios for C31 and C32 a-homohopanes

29,30,31 H C29 + C30 + C31 a-hopanes

29,30,31 M = C29 + C30+ C31 moretanes

27R C27 20 R ctct_x-sterane

27R C27 20 R ctaa-sterane

28R C28 20R etaet-sterane

28R C28 20 R otctct-sterane

29R = C29 20 R o:_xot-sterane 29---R_ C2 9 20 R ctctet-sterane
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Table 5.2. Selected parameters for the aliphatic fractions of 481A-8-7 (top of pipe).

481 A-8-7 (top of pipe)

Parameter Unaltered 24 hr @ 330"C 48 hr @ 330"C 72 hr @ 330"C

n-alkane

range

CPI

Cmax

Pr/Ph

Pr/n-C17

Ph/n-C 18

S/(S+R)
c31

S/(S+R)
C32

29,30,31H
29,30,31M

27R/29R

27R/28R

28R/29R

12-32 10-39 10-38 12-38

3.6 1.0 1.0 1.0

29 15 15 15

0.47 2.3 2.0 2.2

0.31 1.10 0.85 0.80

1.04 0.56 0.50 0.40

- 0.46 0.59 0.46

0.49 0.55 0.48

2.04 3.30 1.64

1.44 1.05 3.79

2.4 1.86 4.34

0.60 0.56 0.87

S/(S+R) - C-22 S and R epimer ratios for C31 and Ca2 ¢x-homohopanes

29,30,31 H C29 + C3o + C31 _-hopanes
m

29,30,31 M C29 + C3o + C3t moretanes

27R C27 20 R aeta-stemne

28R C28 20 R ctact-stemne

27R C27 20 R etaa-sterane 28R C28 20 R ¢xaot-stemne

29R" C29 20 R atxct-sterane 29R C29 20 R txtxct-stemne
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Table 5.3. Selected parameters for the aliphatic fractions of 481 A-22-7 (top of pipe).

481A-22-7 (top of pipe)

Parameter Unaltered 24 hr @ 330"C 48 hr @ 330°C 72 hr @ 330"C

n-alkane

range

CPI

Cmax

Pr/Ph

Pr/n-Cl7

Ph/n-Ci8

S/(S+R)
C31

S/(S+R)
C32

29,30,31H
29,30,31M

27R/29R

27R/28R

28R/29R

13-31 10-37 13-38 12-38

4.13 1.1 1.0 1.!

29 19 16 17

0.44 2.3 - 2.4

1.17 0.44 - 0.29

4.43 0.20 - 0.13

- 0.47 0.59 0.58

0.57 0.56 0.48

2.40 3.81 3.56

0.68 0.50 0.57

2.63 1.71 1.37

0.26 0.29 0.41

S/(S+R) = C-22 S and R epimer ratios for C3n and C32 a-homohopanes

29,30,31 H C29 + C3o + C31 ct-hopanes

29,30,31 M = C29 + C30 + C31 moretanes

27R C27 20 R aaa-stemne

2-_ = C29 20 R cxctct-sterane

27R C27 20 R ctct_-sterane

28R C2s 20 R ccao_-sierane

28R C28 20 R ctaa-stemne

29R C29 20R aaa-stemne
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fL_o I

Before Heating During Heating

/Expelled Oil

[ _Water

[_ - Reaction Vessel
_Sample

After Heating

Figure 5.1. Diagram showing expulsion of pyrolysates during conventional hydrous

pyrolysis.
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BeforeHeating DuringHeating After Heating

Sample/Water
Reaction Vessel

Figure 5.2. Diagram showing the principle of confinement pyrolysis.
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Figure 5.4. Representative mass fragmentograms m/z 191 for the triterpenoid

hydrocarbons in the extracts of sediment AII-112-29 PCI: a) Unaltered; b) 24 hr @

330°C; c) 48 hr @ 330°C; d) 72 hr @ 330°C.
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Figure 5.5. Relative abundance of selected triterpane biomarkers in the heating

experiments of sediment AII-112-29 PC-5: c) 17et(H),2113(H)-31-hopane (22S) and

1713(H),21 a(H)-31-hopane(22R) vs. time, and d) 17ct(H),2113(H)-32-hopane (22S) and

1713(H),21 ct(H)-32-hopane(22R) vs. time.
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the steroid hydrocarbons in the extracts of sediment AII- 112-29 PC 1" a) Unaltered; b)
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Figure 5.7. Histograms of the major aromatic compounds present in the extracts of

sediment AII-112-29 PCI" a) Unaltered; b) 24 hr @ 330°C; c) 48 hr @ 330°C; d) 72 hr

@330°C.
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experiments of sediment 481A-8-7 (top): a) 17ct(H),2113(H)-29-hopane and

1713(H),21et(H)-29-hopane vs. time, and b) 17ct(H),2113(H)-30-hopane and

1713(H),21 cffH)-30-hopane vs. time.



172

,-)

.,O

.<

q.t

100

90

80

70

60

50

40

30

20

I0

0

20

• I i ' I ' I ' I

30 40 50 60 70

Time (hrs)

• I

80

m 31aS

31aR

d)

.<

100

90

80

70

60

50

40
°

30

20 "

10

0

20
I ' ! I ' I I

30 40 50 60 70

Time (hrs)

!

80

32aS

32aR

Fig.ure 5.9. Relative abundance of selected triterpane biomarkers in the heating

experiments of sediment 481A-8-7 (top): c) 17a(H),2113(H)-31-hopane (22S) and

1713(H),21 ct(H)-3 l-hopane(22R) vs. time, and d) 17a(H),2113(H)-32-hopane (22S) and

1713(H),21 c_(H)-32-hopane(22R) vs. time.
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CHAPTER 6

A Proposed Chemical Pathway for the Origin of Ketones in Oils and Sediment

Extracts from the Guaymas Basin Hydrothermai System



182

ABSTRACT

Hydrothermal oils and extracts of hydrothermally altered sediments contain

ketones that appear to be uniquely associated with a high temperature hydrothermal

mode of formation. Oils associated with hydrothermal vents contain several

homologous series of alkanones, ranging in carbon number from CI 1 to C30 with a

Cmax from C15 to C23. The large variation in Cmax is probably a function of the vent

fluid temperatures which range from 250* to 3500C. These oils contain alkan-2-ones

in highest concentrations with slightly lower amounts of 3-, 4-, 5-, (and higher)

alkanones. These compounds are enriched in the interiors of the hydrothermal vent

spires or in downcore hydrothermally-altered sediments, indicating an origin at depth

or in the hydrothermal fluids and not from external biogenic deposition.

Simulation of the natural hydrothermal pyrolysis process by laboratory

hydrous pyrolysis techniques provides information regarding the mode of alkanone

formation. Hydrous pyrolysis of n-C32H66 at 330 and 350"C for 72 hr with water only

or water with inorganic additives has been studied using a stainless steel reaction

vessel. In each experiment a similar distribution of alkanones was formed from the

cracking of the n-alkane. The product distributions indicate a reaction pathway

consisting of n-alkanes and _x-olefins as primary cracking products with internal

olefins, alkanones and alkanals as secondary reaction products of the ot-olefins. The

product compositions were modified by ionic strength, pH and reactive species such

as sulfate, elemental sulfur and sulfide.

Hydrous pyrolyses of Messel shale spiked with molecular probes have been

performed under similar time and temperature constraints to produce alkanone

distributions like those found in the hydrothermal vent oils.
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INTRODUCTION

Numerous reports have identified aliphatic ketones in the extractable portion of

sedimentary organic matter. This homologous series of alkan-2-ones occurs with an

odd carbon number predominance and its source is most likely being microbial

(Cranwell, 1977; Simoneit, 1978, 1979; Brassell et al., 1980; Albaig6s et al., 1984).

Alkanones with an odd/even predominance produced from the incomplete combustion

of n-alkanes or n-alkanols have been identified in aerosols (Simoneit et al., 1991).

Aliphatic ketones with no carbon number predominance have only recently been

reported (Leif et al., 1992; George and Jardine, 1993), with both occurrences being

associated with dolorite sill intrusions into sedimentary sections. Oil shale pyrolyses

generate alkan-2-ones and lesser amounts of 3-, 4-, 5- and 6-ketones (Regtop et al.,

1982, 1985; Rovere et al., 1983). Other products generated in the oil shale pyrolyses

include n-alkanes and terminal and internal n-alkenes. The origin of the aliphatic

ketones must be related to the high temperature conditions encountered in all the

previous studies. The mechanism by which they are formed is still not understood.

George and Jardine (I 993) suggest that the ketones originate by the thermal fission of

alkyl chains linked by ether groups at a variety of chain positions, from 3 to at least 7.

Experiments have been performed which were designed to understand the

chemistry of high temperature hydrothermal systems. Using the procedure of hydrous

pyrolysis, aliphatic ketones have been found to be common pyrolysis products, no

matter what the beginning source material is. This paper presents some results of the

heating experiments and proposes a chemical pathway by which these compounds are

formed.
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EXPERIMENTAL

Sam_g. The seabed oil for this study was sampled from the interior of a

hydrothermal vent collected during Deep Submergence Vessel (D.S.V.) Alvin dives of

March, 1988 (sample 1972-CH1 Interior).

Hydrous pyrolysis experiments. Pyrolysis experiments were performed in

Sno-Trik ® T316 stainless steel high pressure pipes rated at 60,000 psig (4080 bar),

sealed with end caps and heated in an air circulating oven set at 330 ° +2°C. Burdick

and Jackson ultrapure water was used in all experiments. Aliphatic compounds used

in pyrolysis experiments were 1,13-tetradecadiene (purity > 97%), 1-hexadecene

(purity > 97%), eicosane (purity 99%), and dotriacontane _-C32H66, purity > 97%).

The Messel shale used in the experiments was powdered and Soxhlet extracted with

methanol/methylene chloride for 72 hr prior to the pyrolysis studies. The reaction

vessels with reactant mixtures were placed in a glove bag and flushed with five

volumes of argon. Deoxygenated H20 or D20, prepared by bubbling with argon gas

for 45 minutes, was added and the vessels sealed. Durations of the heating

experiments ranged from 1 hr to 72 hr.

Extraction and fractionation. The frozen hydrothermal vent sample was

brought to room temperature and an oil sample was removed from the interior of the

vent matrix. The oil was diluted in chloroform and filtered to remove any debris and

passed through an activated copper column to remove the elemental sulfur. The

sample was reduced to 2 mL by rotary evaporation.

The reaction vessels were removed from the oven and cooled to room

temperature upon completion of the heating cycles. The reaction vessels were

extracted with two 1 mL portions of methanol followed by five 1 mL portions of

methylene chloride. The solvents and water from each pyrolysis experiment were

combined in a centrifuge tube and the organic fraction separated and collected. The

water was extracted with two additional portions of methylene chloride and the two

extract fractions were combined. The methylene chloride extract was dried with

anhydrous sodium sulfate and passed through an activated copper column to remove

the elemental sulfur.

The whole oils and pyrolysis extracts were deasphalted with 100 mL heptane.

The asphaltenes were allowed to precipitate for 24 hrs and removed by filtration. The

deasphalted fractions were fractionated by column chromatography (30 cm x 1 cm)

packed with 3.8 g alumina (fully active) over 3.8 g silica gel (fully active). The
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sampleswereseparatedinto threefractionsby elution with 50mL heptane(aliphatic,

F1), 50mL toluene(aromatic,F2) and25mL methanol(polarNSO,F3).

Furtherfractionationwasperformedby thin layerchromatography(TLC). The

polar NSO fraction was loadedon a silica gel plate (fully active, 20 x 20 cm, 250
pan), and eluted with a solution of heptane:diethyl ether (20:1). The band

corresponding to Rf 0.25 to 0.50 was the ketone band. The ketones were eluted with

methylene chloride and concentrated by rotary evaporation. Quantitation was by the

addition of n-C24D50 and n-C32D66.

Gas chromatography. Gas chromatography (GC) of the oil fractions was

performed with a Hewlett Packard 5890A equipped with a 30 m x 0.25 mm i.d. DB-5

open tubular column (0.25 pan film thickness). The GC oven was heated using the

following program : isothermal for 2 min. at 65°C, 4°/min. to 310°C, and isothermal

for 30 min., with the injector at 290°C, detector at 325°C, and helium as the carrier

gas.

Gas chromatography-mass spectrometry. The gas chromatography-mass

spectrometry (GC-MS) was performed on a Finnigan 9610 gas chromatograph

coupled to a Finnigan 4021 quadrupole mass spectrometer operated at 70 eV over the

mass range 50-650 dalton and a cycle time of 2.0 s. The GC oven temperature was

programmed at isothermal for 2 min. at 65°C, 3°/min. to 310°C, and isothermal for 30

min., with the injector at 290°C, and helium as the carrier gas. The MS data were

processed with an on-line Finnigan-Incos 2300 computer data system.
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RESULTS and DISCUSSION

We have been interested in identifying compounds that could be used as

markers to distinguish hydrothermally derived oils from conventional reservoir oils.

Progress has been made in understanding the hydrothermal generation process and

formation of certain oxygenated compounds.

Chromatographic behavior of aliphatic ketones. The gas chromatographic

behavior of several ketone isomers is shown in Fig. 6.1. Tetradecan-2-one and

tetradecan-3-one are completely resolved by gas chromatography on a DB-5 column,

but tetradecan-4-one is on a shoulder of a peak formed by the coelution of the 5-,6-

and 7-tetradecanones. The mass spectra of the pure ketone standards are shown in

Fig. 6.2 and mass spectra of the four peaks in the ketone mixture are shown in Fig.

6.3.

Ketones in hydrothermal oils. Aliphatic ketones are ubiquitous in

unbiodegraded oils associated with high temperature hydrothermal vents in the

Guaymas Basin. Fig. 6.4a shows a gas chromatogram of the polar NSO fraction of a

representative hydrothermally-generated oil. Fig. 6.4b is the ketone fraction isolated

by thin layer chromatography. There was some loss of the alkan-2-one series in

another fraction. These ketones in hydrothermal oils possess a smooth distribution,

analogous to the n-alkane distributions in mature oils. The aliphatic ketones are

enriched in the interiors of the high temperature vents, suggesting a pyrolytic source.

The alkan-2-ones are usually in highest concentrations, with lesser amounts of 3-, 4-,

5- (and higher) ketones. The same series of ketones has been identified in the

hydrothermally-altered sediments in the proximity of a dolorite sill. The association

of the ketones with sill intrusions, with the exception of the contribution of George

and Jardine (1993), has not been described before in geological samples.

Ketones from the hydrous pyrolysis of n-C32_H_H66. The aqueous high

temperature organic chemistry of n-C32H66 was investigated by pyrolyzing the

hydrocarbon with water only or water with several selected inorganic components

(Leif et al., 1992). The products consisted of a broad distribution of cracking products

with a large amount of unreacted starting material. The cracking products were n-

alkanes, n-alkenes, and a polar fraction containing n-ketones as the major components.

It appears that the primary products are the n-alkanes and terminal n-alkenes,

generated by radical cracking, and secondary reactions produce internal n-alkenes and

oxygenated compounds. It is possible that the alkenes are intermediates to the
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formation of the ketones. Fig. 6.5 shows gas chromatogramsof one pyrolysis

experimentconductedin the presenceof iron sulfides. Fig. 6.5a is the nonpolar

aliphaticfraction,containingn-alkanes, and Fig. 6.5b is the polar fraction, consisting

of ketones. The alkan-2-ones are highest, with lesser amounts of 3-, 4- (and higher)

ketones. Even under strong reducing conditions the ketones were formed by the

hydrous pyrolysis conditions.

Ketones from the pyrolysis of aliphatic molecular probes with Messel shale. A

series of hydrous pyrolysis experiments was performed by spiking 1,13-

tetradecadiene, 1-hexadecene and eicosane on Messel shale and heating at 330°C. The

products were analyzed after 1, 5, 10, 36 and 72 hr. Fig. 6.6 shows the gas

chromatograms of the polar fractions. It was shown that at the termination of the

heating experiments (72 hr), the major compounds were ketones. The distribution of

the ketone isomers is shown in Fig. 6.7. Fig. 6.7a shows the ketones from the reaction

of 1,13-tetradecadiene and Fig. 6.7b shows the products from 1-hexadecene. Both of

these product distributions are dominated by the alkan-2-one, with lesser amounts of

the other ketones. Fig. 6.7c shows the ketones generated from eicosane. The

distribution closely matches the ketone distribution found in the hydrothermal oils

(Fig. 6.8). These experiments indicate that under high temperature hydrothermal

conditions, ketones can be formed from alkenes and alkanes.

Proposed origin of ketones under natural and simulated hydrothermal

conditions. Aliphatic ketones have been shown to be synthesized under natural and

simulated hydrothermal conditions, especially under reducing conditions. A chemical

pathway is proposed where the ketones derive from a short-lived aliphatic alcohol.

Fig. 6.9 shows the general reaction scheme, analogous to the set of reactions proposed

to occur during the thermal degradation of jet fuels (Coleman et al., 1992). It is

suggested that alkanes are first oxidized, and can subsequently form alkenes or

ketones. As shown in Fig. 6.9, catalytic dehydrogenation of alcohols occurs in two

ways depending on the presence or absence of oxygen (Haines, 1988). But reaction I

is favored at high temperatures. In pyrolysis experiments, very often the alkan-2-ones

are highest in concentration and often their predominance occurs together with

terminal n-alkenes, in agreement with the proposed mechanism.
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CONCLUSIONS

Aliphatic ketones are commonly formed under reducing hydrothermal
conditionsfrom alkenes,alkanesand/or aliphatic-richsedimentaryorganic matter.

Theseresultsindicate that a high temperaturechemicalreaction is responsibleis for

their formation. A mechanismis proposedwhere aliphatic alkanesand alkenes

proceedthroughanalcoholintermediate,whichcanthenproceedto theketonewith or

without thepresenceof oxygen.
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NSO fraction and b) isolated ketone fraction of the NSO fraction.
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CHAPTER 7

Conclusions
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Hydrothermal alteration of sedimentary organic matter in the Guaymas Basin

transforms the insoluble organic matter into petroleum by high temperature aqueous

pyrolysis. The results obtained in this dissertation demonstrate the utility of applying

pyrolysis techniques such as hydrous pyrolysis and confinement pyrolysis to simulate

and study the organic geochemical processes occurring under extreme hydrothermal

conditions such as those found in the Guaymas Basin hydrothermal system. A survey

of the oils and sediment extracts from this system and the application of pyrolysis

to duplicate the natural hydrous pyrolysis process has resulted in thetechniques

following :

several homologous series of aliphatic ketones were found to be

ubiquitous in the oils associated with high temperature hydrothermal

vents, and in the extracts of sediments that have been thermally altered

by sill intrusions, their smooth distributions indicate a pyrolytic origin;

novel isoprenoid phenols are the major compounds in the polar NSO

fractions of hydrothermal oils and their distributions indicate an origin

from natural product precursors in the sedimentary organic matter;

• several series of alkylphenol isomers are present in the oils, their smooth

distributions indicate that they are hydrothermal synthesis products;

• the rapid hydrothermal oil generation process at high temperature is

suited for simulation by pyrolysis methods such as hydrous pyrolysis;

a series of experiments using the hydrous pyrolysis technique resulted in a

re-evaluation of the Hoering (1984) paper, proposing a combination of

ionic and radical reactions to explain the extent of deuterium incorporation

observed when pyrolysis experiments are carried out in D20;

the application of a standard hydrous pyrolysis technique duplicated some

of the thermally-enhanced diagenetic conversions documented under

natural conditions;
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evaluation of the hydrous pyrolysis technique indicated that mineral-

catalyzed reactions may be preferentially decreased relative to the radical

cracking reactions when applying the method to the pyrolysis of

unconsolidated marine sediments;

the procedure of confinement pyrolysis was developed and successfully

applied to the simulation of catagenetic transformations occurring by

hydrothermal alteration;

• reaction pathways were proposed to explain the origin of the aliphatic

ketones common in the hydrothermal oils.

The proposed reaction pathways presented in this thesis are based on both

experimental results and evidence reported in the literature. The hypothesized role of

clays as active sites for ionic chemistry is supported by numerous reports in the

literature on the catalytic effects of clay minerals. Further research into specific

reaction pathways of model organic compounds is required before conclusions can be

drawn about the relative contributions of ionic and radical reactions.
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Appendix 1

The Gas Chromatograms for the Seabed Oils from the Hydrothermal Vents of

Guaymas Basin, Gulf of California

In this Appendix the gas chromatograms of the aliphatic , aromatic and NSO

fractions for the interior and exterior oils collected during the 1988 Alvin dive series are

presented.
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Appendix 2

The Gas Chromatograms for the Downcore Sediment Extracts from DSDP Site

477 of Guaymas Basin, Gulf of California

In this Appendix the gas chromatograms of the total extracts, aliphatic ,

aromatic and NSO fractions for the sediment extracts from DSDP Site 477 used in this

thesis are presented.
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Appendix 3

The Gas Chromatograms for the Downcore Sediment Extracts from DSDP Site

481A of Guaymas Basin, Gulf of California

In this Appendix the gas chromatograms of the total extracts, aliphatic ,

aromatic and NSO fractions for the sediment extracts from DSDP Site 481A used in

this thesis are presented.
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Appendix 4

The Gas Chromatograms from the Pyrolysis Experiments on the North Rift

Surface Sediment and Downcore Sediments of DSDP Site 481A, Guaymas Basin,

Gulf of California

In this Appendix the gas chromatograms of the aliphatic, aromatic and NSO

fractions of the unaltered sediment extracts and the pyrolyzed sediment extracts used in

Chapter 5 of this thesis are presented.
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